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Motivation

ä Several groups work on icosahedral-grid based climate/weather models

ä Obstacles for Exascale simulations - but also on small scale:

ã Code is very complex and difficult to refactor

ã Climate prediction creates huge data volumes

Limitations of general-purpose programming languages

ä Semantics and syntax restrict programmers productivity

ä Performance is hardly portable between architectures

Existing Domain-Specific Languages

ä May create optimized code for different architectures

ä Technical languages with limited relation to scientific domain

ä Typically require language-specific paradigm shift for scientists

ä Unclear future of the framework/tool

Existing scientific file formats

ä Metadata for icosahedral data is not standardized

ä Difficult to achieve good performance

ä Pre-defined compression schemes achieve suboptimal ratio

Goals

Address issues of icosahedral earth-system models

ä Enhance programmability and performance-portability

ä Overcome storage limitations

ä Provide a common benchmark for icosahedral models
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Project Key Facts

ä Started March 2016, with three year plan

ä Achieved main deliverables:

ã DSL language definition

ã Source-to-source translation tools development

ã SCIL compression library development

ã Icosahedral benchmarks and mini-applications

GGDML Domain-Specific Language

ä GGDML: the General Grid Definition and
Manipulation Language

ä Abstracted scientific-domain based constructs for:

ã Data types reflecting ”grid” concepts

ã Field declaration

ã Iterators to traverse and update fields

ã Named neighbours in different grids

ä Developed in co-design with domain scientists

Coding with GGDML

foreach c in grid

{

float df=(f_F[c.east_edge ()]-f_F[c.west_edge ()])/dx;

float dg=(f_G[c.north_edge ()]-f_G[c.south_edge ()])/dy;

f_HT[c]=df+dg;

}

Resulting C code

... handle domain decomposition and halo mangagement

for (size_t blk_start = (0); ... blocking

size_t blk_end = ...

#pragma omp parallel for

for (size_t YD_index = 0; YD_index < local_Y_Cregion; YD_index ++) {

#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end; XD_index ++) {

float df = (f_F[YD_index ][ XD_index +1] -

f_F[YD_index ][ XD_index ]) /dx;

float dg = (f_G[YD_index +1][ XD_index] -

f_G[YD_index ][ XD_index ]) /dy;

f_HT[YD_index ][ XD_index] = df + dg;

}

ä Higher-level code is translated into optimized code, driven by the semantics of the
GGDML extensions, and user-provided architecture-specific configurations

Scientific Work Packages: Objectives and Tasks

WP 1: Towards higher-level code design

ä Foster separation of concerns: Domain scientists, scientific pro-
grammer and computer scientists

– High level of abstraction, reflects domain science concepts

– Independence of hardware-specific features, e.g. memory-layout

– Convertible into existing languages and DSLs

ä 1.1-1.3 Develop/reformulate key parts of models into DSL-dialects

ä 1.4 Design common DSL concepts for icosahedral models

ä 1.5 Develop source-to-source translation tool and mappings
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WP 2: Massive I/O

ä 2.1 Optimize file formats for icosahedral data

ä 2.2 Data reduction concepts

ä 2.3 API for user-defined variable accuracy

ä 2.4 Identifying required variable accuracy

ä 2.5 Lossy compression Compression schemeCompression scheme
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?!
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WP 3: Evaluation

ä 3.1 Selection of representative test cases

ä 3.2 Extraction of simple kernels

ä 3.3 Common benchmark package/mini-IGCMs1

ä 3.4 Benefit of the DSL for kernels/mini-IGCMs

ä 3.5 Estimating benefit for full-featured models

ä 3.6 I/O advances for full models
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WP1: Higher-Level Code

ä Milestones:

ã Dialect development: delivered May 2017.

ã The development of the DSL: delivered March 2018.

ã The source-to-source translation tool: continuing.

Architectures and Programming Models

ä GGDML code is translated into different targets

ã Multicore processors (with OpenMP)

ã Vector engines (with OpenMP)

ã GPU-accelerated machines (with OpenACC)

ã Multi-node (OpenMP/OpenACC+MPI)

ä Recent tool improvements

ã Support for automatic & guided domain decomposition

ä Includes methods for halo exchange

ã Automatic check of dirty halo regions

ã Automatic markup for Likwid instrumentation

ã Function inlining

ã Loop fusion

ã Cache blocking

ã Loop interchange

Experiments

Blocking (Broadwell) Scaling (Broadwell &
P100)

ä Blocking improves data reuse with wider grids

ä Experiments show the code scales well on CPUs & GPUs
Before merge After merge

Architecture

Theoretical
Memory

bandwidth
(GB/s)

Measured
memory

throughput
(GB/s)

GFLOPS

Measured
memory

throughput
(GB/s)

GFLOPS

Broadwell 77 62 24 60 31
P100 GPU 500 380 149 389 221
NEC Aurora 1,200 961 322 911 453

Inter-kernel optimization

ä Inter-kernel optimization improved application-level per-
formance 35-40% on the different architectures

GFLOPS

Architecture Scattered
Short

distance
Contiguous

Broadwell 3 13 25
NEC Aurora 80 161 322

Vectorization and memory layout

ä The right memory layout is a key optimization to allow
vectorization and efficient use of memory bandwidth

WP2: Compression

ä Development of Scientific Compression Library
https://github.com/JulianKunkel/scil

ä Users define the required accuracy

ã In terms of relative/absolute/precision ...

ã In terms of required performance

ã The library picks a fitting algorithm

ä Fill value integration into existing algorithms

ä Testing with different models: Isabel, ECHAM, NICAM

ä WP 2 status:

ã Extended compression library with new algorithms: de-
livered 2017

ã Definition of all quantities: delivered 2017

ã Integration into HDF5/NetCDF4: delivered Jan. 2018

Tolerance-Based Results

WP3: Benchmarking

ä WP 3 status:

ã IcoAtmosBenchmark v.1 (kernel suites): March 2018.
https://github.com/aimes-project/IcoAtmosBenchmark_v1

ã IcoAtmosBenchmark v.2 (mini-apps): in progress.
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1: Icosahedral Global Climate Models


