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Motivation

ä Several groups work on icosahedral-grid based climate/weather models

ä Obstacles for Exascale simulations - but also on small scale:

ã Code is very complex and difficult to refactor

ã Climate prediction creates huge data volumes

Limitations of general-purpose programming languages

ä Semantics and syntax restrict programmers productivity

ä Performance is hardly portable between architectures

Existing Domain-Specific Languages

ä May create optimized code for different architectures

ä Technical languages with limited relation to scientific domain

ä Typically require language-specific paradigm shift for scientists

ä Unclear future of the framework/tool

Existing scientific file formats

ä Metadata for icosahedral data is not standardized

ä Difficult to achieve good performance

ä Pre-defined compression schemes achieve suboptimal ratio

Goals

Address issues of icosahedral earth-system models

ä Enhance programmability and performance-portability

ä Overcome storage limitations

ä Provide a common benchmark for icosahedral models
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GGDML Domain-Specific Language

ä GGDML: the General Grid Definition and
Manipulation Language

ä Abstracted scientific-domain based constructs for:

ã Data types reflecting ”grid” concepts

ã Variable declaration & allocation

ã Iterators to traverse and update variables

ã Named neighbours in (triangular/hexagonal) grids

ä Developed in co-design with domain scientists

Fortran code (dynamico) and GGDML version

DO l=ll_begin ,ll_end

!DIR$ SIMD

DO ij=ij_begin ,ij_end

berni(ij ,l) = .5*( geopot(ij,l)+geopot(ij ,l+1)) + 1/(4*Ai(ij)) *

(le(ij+u_right)*de(ij+u_right)*u(ij+u_right ,l)**2 &

+le(ij+u_rup) *de(ij+u_rup) *u(ij+u_rup ,l)**2 &

+le(ij+u_lup) *de(ij+u_lup) *u(ij+u_lup ,l)**2 &

+le(ij+u_left) *de(ij+u_left) *u(ij+u_left ,l)**2 &

+le(ij+u_ldown)*de(ij+u_ldown)*u(ij+u_ldown ,l)**2 &

+le(ij+u_rdown)*de(ij+u_rdown)*u(ij+u_rdown ,l)**2 )

ENDDO

ENDDO

GGDML version of the code above

FOREACH cell IN grid

berni(cell) = .5*( geopot(cell)+geopot(cell%above)) + 1/(4* Ai(cell%ij)) *

REDUCE(+, N={1..6}

le(cell%neighbour(N)%ij)*de(cell%neighbour(N)%ij)*u(cell%neighbour(N))**2)

END FOREACH

ä Higher-level code is translated into target-architecture-optimized code, driven by

ã The semantics of the GGDML extensions

ã User-provided architecture-specific configurations

Scientific Work Packages: Objectives and Tasks

WP 1: Towards higher-level code design

ä Foster separation of concerns: Domain scientists, scientific pro-
grammer and computer scientists

– High level of abstraction, reflects domain science concepts

– Independence of hardware-specific features, e.g. memory-layout

– Convertible into existing languages and DSLs

ä 1.1-1.3 Develop/reformulate key parts of models into DSL-dialects

ä 1.4 Design common DSL concepts for icosahedral models

ä 1.5 Develop source-to-source translation tool and mappings
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WP 2: Massive I/O

ä 2.1 Optimize file formats for icosahedral data

ä 2.2 Data reduction concepts

ä 2.3 API for user-defined variable accuracy

ä 2.4 Identifying required variable accuracy

ä 2.5 Lossy compression Compression schemeCompression scheme
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WP 3: Evaluation

ä 3.1 Selection of representative test cases

ä 3.2 Extraction of simple kernels

ä 3.3 Common benchmark package/mini-IGCMs1

ä 3.4 Benefit of the DSL for kernels/mini-IGCMs

ä 3.5 Estimating benefit for full-featured models

ä 3.6 I/O advances for full models
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Project’s Timeframe and Status

ä Started March 2016 and ends February 2019

ä WP 1 status:

ã Dialect development: delivered May 2017.

ã The development of the DSL: delivering March 2018.

ã The source-to-source translation tool: in progress.

Higher-Level Code

ä GGDML code is currently translated into different targets

ã Multicore processors (with OpenMP)

ã Multi-node with Multicore processors (OpenMP+MPI)

ã GPU-accelerated machines (with OpenACC)

ã Multi-node with GPUs (OpenACC+MPI)

ä Automatic domain decomposition for MPI

ä WP 2 status:

ã Extended compression library with new algorithms : de-
livered 2017

ã Definition of all quantities : delivered 2017

ã Integration into HDF5/NetCDF4 : delivered Jan. 2018

Tolerance-Based Results

ä WP 3 status:

ã IcoAtmosBenchmark v.1 (kernel suites): delivering March
2018.

ã IcoAtmosBenchmark v.2 (mini-apps): in progress.

Compiler Optimization

ä Aim is to optimize compilers that HPC applications can run
more efficiently

ä Provide an interface to the DSL to make transformations
that a compiler may not make due to language restrictions

ä Optimize HPC patterns that can achieve the best possible
performance from the compiler

Compression

ä Development of Scientific Compression Library
https://github.com/JulianKunkel/scil

ä Users define the required accuracy

ã In terms of relative/absolute/precision ...

ã In terms of required performance

ã The library picks a fitting algorithm

ä Fill value integration into existing algorithms

ä Extending the library with new compression algorithms

ä Integration into HDF5 / NetCDF4

ä Testing with different climate models: Isabel, ECHAM,
NICAM

Extending NICAM with a high-level
framework

ä GridTools

ã C++ template framework for weather and climate models

ã Architecture-independent programming interface for per-
formance and portability

ä Evaluating GridTools as a programming framework for
NICAM

ä Successfully ported representative NICAM stencil kernels
with comparable performance as hand-tuned implementa-
tions

Further Planned Optimization

ä Inter-kernel optimization

ã Experiments to evaluate optimization impact

ã Start with manual optimization experiments

ã Improve the source-to-source translation tool to apply
such optimization within the code translation process

ä Loop blocking improvement
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