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Abstract. Many scientific applications are limited by I/O performance
offered by parallel file systems on conventional storage systems. Flash-
based burst buffers provide significant better performance than HDD
backed storage, but at the expense of capacity. Burst buffers are consid-
ered as the next step towards achieving wire-speed of interconnect and
providing more predictable low latency I/O, which are the holy grail of
storage.

A critical evaluation of storage technology is mandatory as there is no
long-term experience with performance behavior for particular applica-
tions scenarios. The evaluation enables data centers choosing the right
products and system architects the integration in HPC architectures.
This paper investigates the native performance of DDN-IME, a flash-
based burst buffer solution. Then, it takes a closer look at the IME-FUSE
file systems, which uses IMEs as burst buffer and a Lustre file system
as back-end. Finally, by utilizing a NetCDF benchmark, it estimates the
performance benefit for climate applications.
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1 Introduction

The dilemma of conventional high-performance storage systems based on HDDs
is that they must maximize the throughput to reduce application run times
and at the same time they shall minimize the provided bandwidth to reduce
costs. The first requirement is often prioritized to the detriment of the second
one, which typically ends up in the oversizing and in a low average usage of
the bandwidth procured. The prioritization is motivated by the requirement to
process large performance peaks particular due to checkpoint/restart workloads,
that often occur in large-scale applications. However, since these systems are
optimized for sequential I/O, data-intense workloads that are not following this
pattern are unable to saturate the network — reducing the effective utilization.
Traditional parallel file systems can be deployed on flash-based storage in-
stead of HDDs, increasing performance for random workloads. A nice work in
this direction was done in [3]. Typically, data is accessed via POSIX interfaces
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but can be accessed using MPI-IO [14]. MPI-1O is a widely accepted middleware
layer for parallel I/O that relaxes the POSIX semantics and is designed for par-
allel I/O. In an alternative storage architecture, a burst buffer [8,11] is placed
between compute nodes and the storage. Acting as an intermediate storage tier,
it’s goal is to catch the I/O peaks from the compute nodes. Therefore, it provides
a low latency and high bandwidth to the compute nodes, but also utilizes the
back-end storage by streaming data constantly at a lower bandwidth.

In-memory systems, like the Kove® XPD® [7], provide byte-addressable stor-
age with better latency, endurance and availability as flash chips. Flash-based
systems, like DDN IME [13], are also byte-addressable, but have different char-
acteristics than an in-memory storage, for example, flash offers a better costs
per gigabyte ratio.

Accessing a fast storage over a POSIX compliant file system or MPI-IO
interface is an interesting option for many users, because neither changes in
source code, nor software recompilation is required as long as it doesn’t degrade
the performance too much. Closed source and pre-compiled applications could
also benefit from that. For that purpose, DDN developed a fuse module (IME-
FUSE) which uses IME as a burst buffer and stores data on a parallel file system.
In this evaluation we used Lustre as back-end.

Our contributions are: 1) we investigate peak performance of IME-native
and IME-FUSE, and compare it to Lustre, 2) we estimate the performance
behaviour for HPC applications, that access data using NetCDF library.

This paper is structured as follows: Section 2 discusses related work, then
Section 3 describes the test environment. Section 4 and 5 show the test setup
and performance results. Finally, the paper is summarized in Section 6.

2 Related Work

Relevant state-of-the-art can be grouped into performance optimization, burst
buffers to speedup I/O and in-memory storage solutions.

Optimization and tuning of file systems and I/O libraries is traditionally an
important but daunting task as many configuration knobs can be considered
in parallel file system servers, clients and the I/O middleware. Without tuning,
typical workloads stay behind the peak-performance by orders of magnitude.
With considerable tuning effort a well fitting problem can yield good results:
[15] reports 50% peak performance with a single 291 TB file. In [4] MPI-IO and
HDF5 were optimized and adapted to each other, improving write throughput
by 1.4x to 33x.

Many existing workloads can take benefit of a burst buffer as a fast write-
behind cache that transparently migrates data from the fast storage to tra-
ditional parallel file system. Burst buffers typically rely on flash or NVRAM
to support random I/O workloads. For flash based SSDs, many vendors offer
high-performance storage solutions, for example, DDN Infinite Memory Engine
(IME) [2], IBM FlashSystem [5] and Cray’s DataWarp accelerator [1]. Using
comprehensive strategies to utilize flash chips concurrently, these solutions are
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powerful and robust to guarantee availability and durability of data for many
years.

The integration of Cray DataWarp burst buffer into the NERSC HPC ar-
chitecture [10] increased the I/O performance of Chumbo-Crunch simulator by
2.84x to 5.73x, compared to Lustre. However, for the sake of efficient burst buffer
usage, the serial simulator workflow had to be split into single stages (i.e., simu-
lation, visualization, movie encoding), which then were executed in parallel. The
research group at JSC uses DDN IME burst buffer [12] and GPFS to identify
requirements for the next HPC generation. The main purpose is to accelerate
the I/O performance of the NEST (“NEural Simulation Tool“). The prelimi-
nary IOR experiments show, that 1/O performance can be increased upto 20x.
BurstFS [16] uses local NVRAM of compute nodes, instead of dedicated remote
machines. An elaborated communication scheme interconnects the distributed
NVRAM and provides a contiguous storage space. This storage is allocated at
beginning and exists for the lifetime of the job. In the experiments, BurstFS
outperforms OrangeFS and PLFS by several times.

The usage of DRAM for storing intermediate data is not new and RAM
drives have been used in MSDOS and Linux (with tmpfs) for decades. However,
offered RAM storage was used as temporary local storage and not durable and
usually not accessible from remote nodes. Exporting tmpfs storage via parallel
file systems has been used mainly for performance evaluation but without dura-
bility guarantees. Wickberg and Carothers introduced the RAMDISK Storage
Accelerator [18] for HPC applications that flushes data to a back-end. It con-
sists of a set of dedicated nodes that offer in-memory scratch space. Jobs can
use the storage to pre-fetch input data prior job execution or as write-behind
cache to speedup I/0O. A prototype with a PVFS-based RAMDISK improved
performance of 2048 processes compared to GPFS (100 MB/s vs. 36 MB/s for
writes). Burst-mem [17] provides a burst buffer with write-behind capabilities by
extending Memcached [6]. Experiments show that the ingress performance grows
up to 100 GB/s with 128 BurstMem servers. In the field of big data, in-memory
data management and processing has become popular with Spark [19]. Now
there are many software packages providing storage management and compute
engines [20].

The Kove XPD [7] is a robust scale-out pooled memory solution that allows
aggregating multiple Infiniband links and devices into one big virtual address
space that can be dynamically partitioned. Internally, the Kove provides persis-
tence by periodically flushing memory with a SATA RAID. Due to the perfor-
mance differences, the process comes with a delay, but the solution is connected
to a UPS to ensure that data becomes durable in case of a power outage. While
providing many interfaces, the XPD does not offer a shared storage that can be
utilized from multiple nodes concurrently.
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Fig. 1: DDN test cluster

3 Test environment

DDN provided access to their test cluster in Diisseldorf on which 10 nodes could
be used for testing. Each node is equipped with two Sandy Bridge processors (8
cores, E5-2650v2 @2.60GHz) and 64 GB RAM. They are interconnected with
a Mellanox Connect-X-4 card providing 100 Gb/sec (4x EDR). As storage, a
DDN ES14K (Exascale 3.1) with two metadata servers and Lustre 2.7.19.12 is
provided; additionally, an IME system consisting of 4 servers is provided. The
flash native data cache of IME acts as a burst buffer and is drained to the Lustre
system, the performance reported with IOR is 85 GB/s in write mode. The DDN
IME provides byte-addressable flash-based storage space with high performance
characteristics. It can be addressed directly (IME-native) in a fast and efficient
way, but DDN also provides a number of convenient solutions, that require less
integration effort. (1) The applications can be re-linked to the MPI-IO imple-
mentation with IME support, which was developed by DDN. (2) Then, DDN
provides a fuse module (IME-FUSE) with IME support, which are convenient
ways to access a shared storage. Both file systems are POSIX compliant and
can be used by the applications without any source code modification, recom-
pilation, or re-linking. In the conducted tests, IME is used via its FUSE mount
and backed by the DDN Lustre. We assume during the write experiment, data is
kept inside the burst buffer and not written back, albeit we cannot ensure this.
The DDN cluster is a experimental system with a lightweight software setup.
Especially, the exclusive access to the IME was not guaranteed, so that some
results could be affected by other users. Therefore, we don’t draw conclusions
from outliers, since we don’t know the origin of them.
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3.1 Benchmarks

As our primary benchmark, IOR [9] is used varying access granularity, processes-
per-node, nodes and access pattern (random and sequential). The official version
of IOR allows us to measure the real performance without considering open/close
times (see Equation (1)). To synchronize the measurements and capture time for
open, close and I/0O separately, inter-phase barriers are turned on (IOR option
-g). The DDN version (IME-IOR) supports IME-native interface, but doesn’t
allow measuring real I/O performance. Therefore, the performance values include
open/close times (see Equation (2)).

filesize
perfLustlre7 IME-FUSE — ti (1)
10
filesize filesize
perfIME—native = = (2)

ttotal topen + tio + tclose

Since the IOR benchmarks does not support NetCDF, and HDF5 is only
supported with limited configuration of the pattern, additionally, the NetCDF-
Bench has been used®. This benchmark uses the parallel NetCDF interface to
read/write patterns on a 4D dataset into a NetCDF4/HDFS5 file. It decomposes
a domain geometry of (¢,z,y,2), e.g., (100,16,64,4) across the processes of an MPI
parallel program. The processes partition the geometry in x and y direction and
one time step is accessed per iteration of each parallel process. Various options
to control the optimizations and data mappings from NetCDF are exported
by the benchmark (chunking vs. fixed layout, unbound dimensions, chunk size,
pre-filling).

Finally, to measure performance of individual operations to investigate vari-
ability, the sequential benchmark io-modelling is used?. It uses a high-precision
timer and supports various access patterns on top of the POSIX interface.

4 Experiment Configuration

On the DDN cluster, we use NetCDF-Bench, IOR, and IME-IOR to measure
the IME’s throughput, and use io-modelling for testing variability. Each test
configuration is repeated 10 times. All experiments are conducted with block
sizes 16, 100, 1024, and 10240 KiB.

To find the performance limits of the test system we use the IOR benchmarks.
For that purpose, we conduct a series of experiments with various parameters,
where we measure the performance for {read, write} x {random, sequential} x
{POSIX, MPIIO} x {Lustre, IME-FUSE, IME-native} x {collective, indepen-
dent}. The stripe count on Lustre is twice as large as the number of nodes.

The purpose of NetCDF-Bench is to investigate the I/O behaviour of typ-
ical scientific application, that access large variable through NetCDF4. In the

3 https://github.com/joobog/netcdf-bench
* https://github.com/JulianKunkel/io-modelling
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experiment, we varied the following parameters: {Lustre, IME-FUSE} x {read,
write} X {chunked, contiguous} x {collective, independent}.

With io-modelling benchmark we looked at the variability of individual
I/O accesses {Lustre, IME-FUSE} x {read, write} x {random, sequential}.

4.1 Open/close times

The time of open/close reduces the reported performance of IME. They are
dropped whenever possible for two reason. Firstly, in our experiments the test
file size is variable (filesize = 100-blocksize-NN-PPN), it affects small experiments
more than the larger ones. Additionally, it should be noted, that for production
runs, larger files and capacities are assumed, reducing this overhead. Unless
otherwise stated, the performance reported in this paper was measured without
open/close times.

The goal of our evaluation is to systematically investigate the scaling behavior
of the DDN IME’s, IME-FUSE and Lustre. In the following experiments we use
1-10 client nodes (NN) and 1-8 processes per node (PPN) to push hardware
to the limits. On each compute node only one CPU is used, that is connected
directly to the Infiniband adapter, to avoid the QPI overhead. To provide reliable
results, each experiment was repeated 10 times.

4.2 Performance

Table 1 shows the best and the average performance values that were observed
with IME-IOR during the test runs on a single node and on 10 nodes for ran-
dom and sequential I/O. Based on average performance for random I/O with
NN=1 and PPN=8, 10 client nodes can achieve a throughput of 61 GB/s and of
80 GB/s for write and read, respectively. As Table 1 shows, the measured write
performance is similar to expected values, which indicates that the compute
nodes are the bottlenecks. But the measured read performance is significantly
lower than expected. This indicates, that the bottleneck here are the IMEs. The
same considerations apply to sequential performance.

5 Evaluation

IME-native (Figures 2 and 3): Characteristic for IME-native is that for
each block size, there is a linear dependency between read and write accesses.
The performance behavior for each block size can be approximated by a linear
function and that small block sizes tend to have better write behaviour.

The complete set of performance results for random I/O is shown in Figure 3.
Firstly, it confirms the linear scalability. Secondly, there is also no regression of
the curves, probably because the experiment setup couldn’t push the IMEs to the
limits. Further observations are: 1) writing small blocks is more efficient than
reading small blocks; reading large blocks is more efficient that writing large
blocks, 2) performance increases with increasing access granularity. 3) with 1 or
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4 PPN the available network bandwidth is not utilized. With PPN=8, we are
close to the available network bandwidth for 1 and 10 MiB accesses. Hence, the
I/O path involves relevant latencies.

Lustre (Figure 4a): Firstly, a single node can profit from caching, when
reading data. In this case observable performance can rise up to 37 GiB/s (not
shown in the figure). The caching effects disappear for NN > 1, hence we ig-
nore them in further discussion. Secondly, the read performance don’t exceed
17.4 GiB/s, and is achieved with NN=10, PPN=8, BS=100 KiB. This is a
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Fig. 2: Random access performance depending on blocksize and PPN
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NN|PPN| Performance | Performance |I/O type|File size
in [MiB/s] | in [MiB/s] in [MiB]

read| write| read| write
1 1] 2,560] 1,240| 2,400| 1,180[rnd 1000
1 1| 2,290| 1,230| 2,000/ 870|seq 1000
1 8| 8,500| 6,390| 8,100| 6,120|rnd 8000
1 8| 8,700| 6,380| 7,100| 4,530|seq 8000
10 1{22,300|10,700|21,200(10,000|rnd 10000
10 1(23,200(10,800(22,200| 8,430|seq 10000
10 8|67,500(60,200(65,300(58,400|rnd 80000
10 8(67,500(62,900(61,700|54,300|seq 80000

4

Table 1: The best and mean performance measured with IME-IOR (blocksize:
10MiB) (NN: number of nodes; PPN: processes per node).
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Fig. 3: IME-native random I/O performance (lines go through max. values)

contra-intuitive, because usually large block size show better performance. The
best write performance is 11.8 GiB/s, and is achieved with NN=4, PPN=6,
BS=1000 KiB. This measurement and the incrementally flattening curve indi-
cate a poor scalability of Lustre. Generally speaking, Lustre has a lot of internal
overhead, especially to make it POSIX compliant, e.g. distributed lock manage-
ment. Thirdly, a particular striking point is the result for MPI-IO write perfor-
mance. It is significantly lower than for other configurations. For this behaviour
we have no explanation at the moment. It is also a confusing result, because
it is in contradiction to our later experiment with NetCDF-Bench (Figure 5).
NetCDF4 uses MPI-1IO as back-end, but achieves better results.

IME-FUSE (Figure 4b): The file system shows a linear scalability, similar
to the IME-native, but provides less I/O performance, especially for reading.
This is probably caused by the FUSE overhead, which includes moving I/0
requests from user space to kernel space, and then from kernel space to IME-
FUSE.

5.1 Application Kernel Using HDF5

In this experiment, the HDF5 VOL development branch (date 2016-05-09),
NetCDF 4.4.1 and NetCDF-bench is used. Several values for the 4D data ge-
ometry of raw integer data have been explored. For each block size we did 100
measurements. The configuration parameters are summarized in Table 2.
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Parameter (-d) |Data size|Block size
(t:xiy:2) ‘ [in GiB]| [in KiB]
(100:16:64:4) 05 16
(100:16:64:25) 3.1 100
(100:16:64:256) 7.8 1024
(100:16:64:2560) 78.1 10240

Table 2: NetCDF-Bench configuration used in during the benchmark.
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Fig. 5: NetCDF performance for Lustre (similar to IME-FUSE)

In the experiments, we use 10 client nodes and 8 processes per node to access
a shared file. All experiments were conducted with fixed dimension sizes only,
since the unlimited/variable dimensions are not supported in combination with
independent I/O in NetCDF4. Figure 5 shows the results. Generally, as expected,
independent chunked I/O was a good configuration.

Lustre vs. IME-FUSE: Generally, the performance looks very similar for
Lustre and IME-FUSE, that is why we only included the picture for Lustre.
There are a few differences: (1) Collective I/O without chunking causes large
variability while reading 16 KiB blocks, (2) and better performance while writing
10 MiB blocks on Lustre. (3) If chunking is enabled and independent I/O is used,
then 10 MiB block sizes can be read with a low variability. The best performance
achieved for collective read is 23 GiB/s write 14 GiB/s, and for independent read
40 GiB/s and write 18 GiB/s.
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Chunking vs. no chunking: Read performance suffers a lot on both file
systems, if chunking is enabled for small blocks. The probability, that several
NetCDF processes access the same chunk, increases for small block sizes. In this
case, the processes have to load the whole chunk on each node into memory,
even if only a small part of it is required. Such inefficient access patterns can
lead to unnecessary data transfer over the network, i.e. when large parts of the
data are pre-loaded, but aren’t unused. This doesn’t apply to large block sizes.
Therefore, we can observe performance advantages.

Independent I/0O vs. collective I/0O: If chunking is enabled, collective
I/0O degrades the performance. If chunking is disabled, it improves I/O for small
blocks and degrades I/O of large blocks.

Caching: For large block sizes (10204 KiB) independent chunked read perfor-
mance outperforms the write performance. We suppose that cache is responsible
for this performance speed-up.

5.2 Performance variability with individual I/Os.

This experiment is conducted measuring timing of 10,000 or 1,024 individual
I/Os with a single process on IME test cluster on IME-FUSE and Lustre. Fig-
ure 6 shows the qualitative difference between the file systems. The figure shows
the density (like a smoothened histogram) of the individually timed I/Os. We
observe 1) the read operations on Lustre are faster than using IME-FUSE —
this is presumably due to client-side caching. 2) the random acceleration of IME
improves write latencies/throughput for IME.

6 Conclusion

IME is a burst buffer solution, that is completely transparent to applications
and to users. These properties make it beneficial for random workloads. Read
performance depends whether data is located on the IME flash or on Lustre. The
data migration policy is usually hidden from the users, so that read behaviour
is not known in advanced. There is an API though to allow users to stage data
explicitly.

For large access sizes and processes per node, IME was able to nearly satu-
rate the network. We did not achieve better performance with IME in all test
scenarios, particularly, for the NetCDF benchmark. The reason for the subopti-
mal performance gain of IME compared to Lustre may be due to: 1) the access
pattern caused by NetCDF4 with HDF5 has a considerable overhead; 2) the Lus-
tre storage from DDN is already well optimized; 3) the small and experimental
laboratory setup that we used for testing. We expect a significant performance
gain once more clients access IME. Further large-scale investigation is necessary.
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