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Abstract. It is not uncommon to run tens of thousands of parallel jobs
on large HPC systems. The amount of data collected by monitoring
systems on such systems is immense. Checking each job individually by
hand, e.g., for identification of high workloads or detection of anomalies,
is infeasible. Therefore, we are looking for an automated approach.
Many automated approaches are looking at job statistics over the entire
job run time. Information about different activities during the job exe-
cution is lost. In our work, we partition the collected monitoring data
for each job into a sequence of smaller windows for which we analyze
the I/O behavior. Then, we convert the sequence to a footprint vector,
where each element shows how often this behavior occurs. After that,
the footprint dataset is classified to identify applications with similar
I/O behavior. The classes are interpretated by a human which is the
only non-automatic step in the workflow.

The contribution of this paper is a data reduction technique for moni-
toring data and an automated job classification method.

1 Introduction

Modern HPC systems involve a complex interaction between many hardware and
software components. To get information about the system health and utilization
powerful monitoring systems are deployed and constantly improved. Basically,
monitoring systems share the same principle: (1) Collectors capture utilization
metrics from HPC components in a fixed interval. (2) Analysis tools access data
for visualization and statistic computation.

They may utilize various visualization and statistical tools that process mon-
itoring data, and aggregate it to an appropriate and understandable representa-
tion. These systems allow a detailed look at the current system state. Advanced
features allow archiving of job data, set alerts and expose the data to users.

Daily, tens of thousands of jobs can be executed on modern HPC systems,
producing an immense amount of monitoring data. These data contain a lot of
useful and interesting information but it is a challenging task to evaluate all
these data with human power only. Therefore, these systems require new tools
for automatic evaluation.

In respect to I/0O, storage is known to be not very well utilized on many
systems. As data is crucial for operation and storage an expensive part of HPC
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systems, data centers are interested in its efficient usage. The good news is that
many workflows have often hidden optimization potential there, that is wait-
ing to be discovered and utilized. For example, a workload manager can launch
non-interfering applications together (e.g., I/O intensive and CPU-intensive ap-
plications), troublemakers can be isolated and problems can be communicated
to users. Applications, with bad I/O behavior can be identified and optimized. A
more predictable I/O could make application runtime predictable and provide a
better user experience. A deep insight in the current systems and understanding
of the problem could be helpful for designing future system.

This paper is structured as follows. We start with the related work in Sec-
tion [2| Then, in Section [3| we introduce the DKRZ monitoring systems and
explain how I/O metrics are captured by the collectors. In Sectionwe describe
the data reduction and the machine learning approaches and do an experiment
in Sections [f] and [6} Finally, we finalize our paper with a summary in Section

2 Related Work

Advanced HPC monitoring systems collect data from different sources and con-
vert them into an understandable representation. Then, they compute statistics,
correlate data from multiple system levels and visualize them. This allows a deep
understanding of the system, application I/O profiling and anomaly detection.
Often, a portion of this data, which doesn’t require a deep domain knowledge, is
exposed to users. Many monitoring systems work in this way, e.g., Beacon [11],
XDMoD [5], or the DKRZ monitoring system [1]. Many more tools to capture
and analyse I/O behavior are described in [3].

An automated workload characterization on storage was investigated in [2].
This approach includes a monitoring infrastructure, that collects storage-specific
metrics from arriving I/O requests. Based on the captured data, a workload
model, that represents the main aspects of I/O-intensive applications, is created.
Experiments with predictive models for I/O performance and variability are
conducted in [6] [10] [4].

A machine learning approach for anomaly detection was investigated by
Tuncer et al. in [8]. This approach targets two aspects. First, data reduction
by mapping large raw time series to a few statistics. Second, automatic anomaly
detection and classification with machine learning algorithms. With appropri-
ate data, a model can be adapted for detection of different anomaly types, e.g.,
hardware issues, memory leaks, system health status. In the experiments on an
HPC cluster and a public cloud, a trained machine learning model shows a high
accuracy (F-score higher than 0.97).

In [7] B. Seo at al. are classifying I/O traces with a data-mining approach
to build a software for flash translation layer (FTL) on SSDs, with intention to
improve I/O performance and to increases hardware lifetime. The traces consist
of sequences of /0O requests, where each I/O request contains the logical block
address, access type and number of pages to read/write. In the pre-processing
step, each trace is reduced to a small and well-optimized feature vector. Then,
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a data set of these vectors is used for classification and training of a prediction
model.

Job runtime and I/O prediction were done in PRIONN [9]. PRIONN is a
neural network that is trained with constant size 1D or 2D images, that in turn
are derived from variable length job scripts. This representation allows using deep
learning algorithms. In the experiments on a real HPC this approach works with
75% mean and 98% median accuracy. It is also able to predict around 50% of
the data bursts.

In contrast to existing work, we segment the job data into windows of activity
that are characterized and investigate unsupervised methods for the analysis.

3 DKRZ Monitoring

DKRZ maintains a monitoring system that gathers various statistics from the
Mistral HPC system, that has 3,340 compute nodes, 24 login nodes, and two Lus-
tre file systems (lustre0l and lustre02) that provide a capacity of 52 Petabyte.
The monitoring system is made up of open source components such as Grafana,
OpenTSDB, and Elasticseach but also includes a lightweight self-developed data
collector, that captures continuously node statistics — we decided to implement
an own collector when analyzing the overhead of existing approaches. Addition-
ally, the monitoring system obtains various meta-information from the Slurm
workload manager and injects selected log files. A schematic overview is pro-
vided in Figure [I}] The data is aggregated and visualized by a Grafana web
interface, which is available to all DKRZ users: Mainly, that are three type of
information about login nodes, user jobs, and queue statistics.

In the first place, a monitoring service gives the users an overview of the cur-
rent state of the system, the current load of login nodes and Slurm partitions.
For each single machine, a detail view also provides information (incl. historical
data) about system load, memory consumption, and Lustre statistics. Job mon-
itoring is enabled by default in a coarse-grained mode, but the functionality can
be extended by Slurm parameters. With appropriate parameters, the monitoring
system can gather information about CPU usage and frequency, memory con-
sumption, Lustre throughput, and network traffic for each compute node. DRKZ
also runs XDMoD on compute nodes for viewing historical job information as
well as real-time scientific application profiling.

3.1 Metrics

In our experience, collecting many metrics from thousands of nodes in short time
intervals creates a noteworthy overhead (exceeding 1%). Additionally, over time,
monitoring data occupies a significant amount of data space. For a relatively
large system like Mistral this is of particular concern — it would take at least
800 GiB to record a single metric with a 1s interval for one year on all nodes.
Therefore, we reduced the number of captured metrics to a minimum.
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Fig. 1: Monitoring components.

To avoid much overhead, metadata and I/O metrics are selected in the follow-
ing way: (1) Similar metadata counters are combined into three different groups:
read, modification and other accesses. They create and unlink counters are cap-
tured separately. The exact group compositions and metric names are listed in
Listing [1} (2) For I/O we just capture a set counters. The read_*, write_* and
seek counters provide the basic information about file system access performed
by the application. We also include the osc_read_*, osc_write_*, because the
Lustre client transforms the original file system accesses, made by the applica-
tion, to Lustre specific accesses — for instance by utilizing the kernel cache. This
can have a significant impact on I/O performance (e.g., when many small 1/0
accesses are created but coalesced). The metrics are listed in Listing

These metrics are collected in a 5sec interval for both file systems and send
in JSON format to the Elasticsearch database.

4 Methodology

From the monitoring system we can map jobs to hosts and can extract a time
series per host for the job runtime.

Source files: /proc/fs/lustre/llite/lustre*x-*/stats

md_read = getattr + getxattr + readdir + statfs + listxattr + open + close
md_mod = setattr + setxattr + mkdir + link + rename + symlink + rmdir
md_other = truncate + mmap + ioctl + fsync + mknod

md_file_create = create

md_file_delete = unlink

Listing 1: Metadata metrics captured on compute nodes for lustre01 and lustre02.
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Source files: /proc/fs/lustre/llite/lustre*-*/read_ahead_stats
osc_read_bytes, osc_read_calls

osc_write_bytes, osc_write_calls

read_bytes, read_calls

write_bytes, read_calls

seek

Listing 2: I/O metrics captured on compute nodes for lustre0l and lustre02.

However, machine learning algorithms can not be directly trained with the
raw data collected from our monitoring system because most algorithms require a
fixed number of inputs, but the job data is of variable length: Firstly, the job run
times are variable. Secondly, jobs can run on any number of nodes producing one
time series per node. In order to process them with machine learning algorithms,
we convert them into a suitable fixed length representation. A pleasant side effect
of the following data pre-processing step is data reduction.

In the first step, we split the job runtime in equal length windows. Since a
parallel job can run on several nodes, we obtain a number of 2D segments for
each metric. A schematic illustration of a 3 x4 segmentation is shown in Figure 2]

In the next step, the segments are converted to N x N matrices (N =
length(v) = 12 in our case), by computing statistics for each segment on runtime
and nodes using the stats() function in Equation .

The conversion process for a segment is shown in Figure Firstly, the
stats() function is applied to all segment rows line by line, i.e., a statistics
for each host’s time series is computed removing the variability of job lengths.
Then, stats() is applied to all columns of the intermediate result, i.e., a sin-
gle statistics is computed across all hosts making the statistics independent of
the number of hosts. The latter statistics is particularly relevant for large jobs.
Finally, for each job and each metric we get a sequence of N x N matrices.

stats (¥) = (min, max, mean, q01, q10, 05, q25, 950,975,990, q95,999) (1)
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Fig.2: Example of a job running on four nodes for eight time units and the
resulting 3 x 4 segmentation.
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In our experiments, we don’t use the seek metric, i.e., we use the remaining
13 metrics (see Listings [I] and [2). On the whole, there are 12 stats (x-axis) -
12 stats (y-axis) - 13 metrics = 1872 statistics for each segment. A schematic
representation of a statistic matrix that contains these values is given in Figure
On this pre-processing stage, we have a sequence of statistic matrices.
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Fig. 3: Conversion of a 3 x 4 segment to a statistic matrix.

Our goal is to convert the sequences to fixed size vectors, called footprints
according to Equation , where each element represents a kind of I/O behavior.

In the first step, we do the segmentation and create statistics matrices for all
jobs. Then, we put them in a data pool, and group them by means of a clustering
algorithm. The statistics in the same group are labeled with the same I/O class.
After the identification of I/O classes, we compute footprints for each job, i.e.,
statistics which tell us how often the I/O classes occur in a job. In the last step,
we use the clustering algorithm again to group the footprints to identify different
types. (See Section for details.)

footprint(jobid) = Tjehia -
2

with ¥ is a fixed length numeric vector

A generic example in Figure [ illustrates the basic idea: from a single foot-
print, we can compute the exhibition of four different I/O behaviors to a different
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Fig. 4: Footprint example.

extent of the job runtime. Note that the classes I01-104 must be identified and
labeled manually.

5 Test data

For evaluation, we downloaded a data set for a time period of 5 days, from 2018-
12-07 to 2018-12-13. It contains data of 70846 jobs. 33193 (47%) of them are jobs
from compute and compute2 Slurm partitions with exit status COMPLETED. These
are used for our evaluation. Jobs not considered where either faulty, or short jobs
run on the small partitions gpu, miklip and minerva. Additionally, ommitted
jobs are from the shared and prepost partitions are shared by several users, so
that monitoring data from these partitions can not be assigned unambiguously
to a job.
Details of the job statistics are listed in Table

JOBS|EXIT STATUS JOBS|SLURM PARTITION
1,026/ CANCELLED 37,989 |compute,compute2
63,636/ COMPLETED 241|gpu
5,753| FAILED 828 |miklip
3|NODE_FAIL 34|minerva
426/ TIMEOUT 31,752|shared,prepost
(a) Exit status statistics (b) Slurm statistics

Table 1: Dataset statistics of 70846 jobs captured on Mistral supercomputer in
the time period of 5 days.

5.1 Data preparation

The time series of the job are split in 10 minutes large segments and converted to
fixed size matrices, as described in the previous section. The leftovers at the end
of job data and jobs that are smaller than 10 minutes are discarded. Finally, we
apply the logl0 function to all values, e.g., as a 10x increase in a statistics adds
one to the distance. This shortens the distance from far-away classes and allows
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clustering algorithms to combine neighbouring classes instead of grouping all
observations similar to the maximum together and the rest. Theoretically, this
pre-processing step would make it easier to recognize outlier classes, which are
present in this data set.

After processing the monitoring data, we obtain around 128,000 statistics ma-
trices. Out of convenience, these segment statistics are deflated to 1D-representation
and stored row-wise in a file. The created dataset contains all statistics (1872
columns) and statistics matrices (around 128,000 rows). In further course of the
paper use this representation for visualization and refer to them as samples.

6 Evaluation

6.1 I/0 behavior classification

In the training phase, we feed a kMeans algorithm with 100,000 randomly se-
lected samples from the dataset and obtain a model that can recognize 8 classes
of I/O behavior. Table |2 shows the clustering result.

The resulting classes are quite different. We could describe only two of them,
I00 (Normal I/O) and I03 (Intensive I/0). Five random samples for I00 and
103 are visualized in Figures [ba] and pb|to give the reader an impression of the
I/O behavior of each class. Arguably, the third and fourth example from the
class 100 still performs some read and write calls but with little data, while 103
shows a consistenly high activity.

On the x-axis, metric names represent the whole set of segment statistics, e.g.,
bytes_read is a collective term for all statistics that were calculated statistics
matrics for bytes_read. That are min, max, mean values and quantiles (q01, q05,
q10, 25, 50, q75, 90, q95, q99) for nodes and runtime, i.e., 144 values/metric.
Due space restrictions, we do not label them all, but show only the metric names.
Values on the y-axis are scaled to a range between 0 and 1 for each statistic
individually. This scaling was done only for the purpose of the visualization. It
allows to consider all statistics in one picture.

100 represents non-1/O or typical storage usage class. With 91,28%, this is
by far the largest class of all. Probably, several classes were combined into one

I/0 Class Size Description
# of Segments| in %
100 117239|91.28|No I/0, Typical 1/0, ...
101 552| 0.43
102 13| 0.01
103 471| 0.37|Intensive I/O
104 1404| 1.09
105 8738| 6.8
106 5/ 0.0
107 19| 0.01

Table 2: I/O class distribution.
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Fig.5: Five randomly selected individual segments (y-axis) of the identified
classes.

large class. Formation of such a large class helps to isolate outliers classes with
extremely poor or intensive I/O performance.

103 shows an increased read I/O performance and large number of metadata
reads. Both can interfere with each other, e.g., metadata and storage access are
done sequentially one after each other, and neither I/O performance, nor meta
data access can achieve full speed. Nevertheless, as we see later, this I/O class
represents I/O intensive behavior.

The description and labeling by experts of other classes are difficult and re-
quires further investigations. That becomes particularly apparent when the jobs
are visualized individually. In Figure [5a] we can see that the kMeans algorithm
puts at least three different I/O behavior classes into the 104 class. The same ob-
servation we could made for IO0 and I05. This is at least hint, that the number
of clusters was too small.

The samples in other classes are classes are similar and even for IO0 and 103
we can not be sure, that they represent only one I/O pattern. Precise description
can be done only by understanding of the rules of the trained model — it must
be decomposed and analysed after each training. In practice this task is quite
burdensome and very difficult to apply, hence we do not consider this approach
to be beneficial by itself. We will look for alternatives in our further research.
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io_sequence (14496682) =
[2332232231321441000111111111111111111
1111111111111 11111111115558686%6%67777TT7]

footprint (14496682) = [3, 44, 6, 5, 2, 3, 4, 5]
footprint_norm(14496682) = [0.04, 0.61, 0.08, 0.07, 0.03, 0.04, 0.06, 0.07]

Listing 3: Sequence of I/O classes.

6.2 Footprinting

After the first clustering pass, the time series can be represented as a sequence of
the eight generated I/O classes. An example is shown in Listing This sequence
is still variable length and is not suitable for most machine learning algorithms.
Therefore, we do another data reduction by counting I/O classes and obtain an-
other fixed length vector, called (absolute) footprint. We also do a normalization
of the vector, i.e., each value is divided by the sum of vector elements, i.e., in
a normalized footprint the sum of vector elements is 1. Examples are given in
Listing [3] Doing this for each job data, we obtain a new dataset consisting of
20,704 normalized footprints.

To group similar jobs we apply kMeans algorithm a second time on the
footprint dataset and obtain a footprint classifier for 8 job classes. The footprints
are visualized in Figure [f] As we can see, IO0 dominates in FP0O and 103 in
FP2. From this observation we conclude that FPO represents jobs with low I/0
activity and FP2 represents I/O intensive jobs. Unfortunately, without a precise
description of other I/O classes we can not provide a reasonable description of
the remaining footprint classes.

Class Class size Job score >= 6 Job score >= 17

# of jobs in %| # of jobs in %| # of jobs in %
FPO 16003 77.29 5 0.03 0 0.00
FP1 2605 12.58 20 0.77 2 0.08
FP2 404 1.95 395 97.77 0 0.00
FP3 65 0.31 1 1.54 0 0.00
FP4 160 0.77 58 36.25 0 0.00
FP5 440 2.13 0 0.00 0 0.00
FP6 164 0.79 8 4.88 0 0.00
FP7 863 4.17 0 0.00 0 0.00

Table 3: Footprint statistics. I/O intensive jobs with score >=6 and >=7 were
identified manually. (Class size percentage refers to total number of jobs. I/O
intensive job percentage refers to class size.)

7 Manual identification of I/O intensive jobs

For verification, we identify manually the I/O intensive jobs. In the first step, we
visualize the average performance of all metrics in density plots and determine
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Fig. 6: Footprints of the different job classes. For each class, the percentage of
each IO class is shown.

thresholds for normal, high and critical performance values. This is a highly
subjective assessment without any consideration other factors, but for validation
it is sufficient to pick a set of most I/O intensive jobs from our dataset. Then, we
use the thresholds to label job performance, i.e., values for normal performance
are labeled 0, values for high performance are labeled with 1 and for critical
performance are labeled with 2. After that, for each job we obtain 13 labels. The
sum of these labels is the resulting job score. The distribution is visualized in
Figure [7]

According to the definition, the jobs with a high score are I/O intensive. The
complete distribution is shown in Table[3] We pick jobs with high job scores and
compare them with the previous results.

For job score >=7 there are 2 jobs. Both of them are located in the FP1
class, where I05 dominates. IO5 contains several I/O subclasses, one of them is
metadata sensitive. A closer look on both jobs reveals, that they are metadata
intensive. This explain why kMeans put them in the FP1 class, but it is also a
hint, that the amount of I/O classes should be increased.

For job score >=6 there are 487 jobs. Surprisingly, 97.77% of FP2 class are
these I/O intensive jobs, and FP2 class identifies 81.1% of them. Hence, the
automatically determined classes cover the most I/O-intensive jobs well, albeit
it requires a manual step to first label them accordingly.
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8 Summary and Conclusion

In this paper, we utilize an unsupervised machine learning approach to analyse
internal I/O behavior of parallel jobs. The basic idea of the approach is to
generate footprints of the jobs by splitting a timeseries of I/O metrics for a job
into fixed windows and compute statistics per host and time window. Then, the
kMeans algorithm is used to generate classes for each window, then the time
series of a job is converted into a time series of classes and reduced to a vector
that contains how often the classes occur during the job runtime. The different
jobs are classified by running kMeans on the resulting time series creating a
single class for each job. We then explore the result of the approach on a week’s
data of the Mistral supercomputer.

It turned out, that the most challenging part is to describe the automatically
generated I/O classes, that are found by the clustering algorithm. We could
identify three of eight of them: “normal I/O”, “intensive I/O” and “other I1/0”,
whereby “other I/O” is a container for I/O classes, that are not clear what they
represent.

Surprisingly, applied to our small data set, the manual labeling lead to the
situation that I/O intensive applications could be identified with a precision of
97% and a recall of 81%. However, the approach is still not completely automated
and there is uncertainty in determining the number of relevant 10 classes and
job classes. Another weakness of this approach is that it gives no answer to
the question, if it this approach works generally and how decision rules can be
extracted and used for I/O class description.

As we found the unsupervised labeling not optimal, we are investigating
to replace that portion of the workflow with a semi-manual labeling that is
more easily comprehensible. We will keep the basic idea of the workflow, i.e.,
segmenting job execution into fixed window, as this allows to identify phases of
I/O activity.
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