
SFS: A Tool for Large Scale Analysis of
Compression Characteristics

Julian Kunkel

German Climate Computing Center (DKRZ), kunkel@dkrz.de

Abstract. Data centers manage Petabytes of storage. Identifying the a
fast lossless compression algorithm that is enabled on the storage system
that potentially reduce data by additional 10% is significant. However, it
is not trivial to evaluate algorithms on huge data pools as this evaluation
requires running the algorithms and, thus, is costly, too. Therefore, there
is the need for tools to optimize such an analysis. In this paper, the open
source tool SFS is described that perform these scans efficiently. While
based on an existing open source tool, SFS builds on a proven method to
scan huge quantities of data using sampling from statistic. Additionally,
we present results of 162 variants of various algorithms conducted on
three data pools with scientific data and one more general purpose data
pool. Based on this analysis promising classes of algorithms are identified.

1 Introduction

The tremendous growth of data has lead to an increase in data traffic and storage
needs: It was estimated that at the end of 2016, 1.1 Zettabytes per year are
transferred via the Internet1. In 2011, it was estimated that the available storage
of the world would exceed 295 Exabyte of perfectly compressed information [2].
Lossless compression schemes pack the information content of data efficiently, to
reduce the costs to store and transfer data. The achievable compression ratio2

depends on the ability of a compression algorithm to optimally pack the given
byte array of data. Depending on the file format and actual data, the Shannon
entropy of these bytes may be low, yielding a high data reduction or low. Some
compressors are written having certain types of data in mind. For example,
Google researchers published several algorithms (Brotli, Zopfli) to compress web-
data for transfer. Since data is read many times but needs to be compressed only
once, the algorithms aim to optimize compression ratio and decompression speed,
but at the cost of compression time.

In High-Performance Computing (HPC), data centers manage Petabytes of
storage. Identifying promising compression algorithms is not trivial as the evalu-
ation may be costly, too. Quantifying the compression ratio and the compression
speed for a certain algorithm basically requires to analyze these features on the

1 http://www.livescience.com/54094-how-big-is-the-internet.html
2 We define the compression ratio as r =

size compressed
size original

; inverse is compr. factor.



2 Julian Kunkel

large data pool. Applying a command line tool such as bzip2 to compress and
decompress every file is problematic for data centers, as they host files in the or-
der of several Terabytes. Running slow algorithm may already take several weeks
on a single file. An initial case study that has been conducted by the author on
the data pool at DKRZ using this strategy took several weeks but only resulted
in the scan of 70 (bigger) files out of 300 million (details are described in the
evaluation).

Therefore, tools are necessary to optimize the runtime of this analysis but
still provide sufficient accuracy. Examples for such characteristics are: the pro-
portion of storage capacity is utilized by a certain file format; the overall com-
pression ratio expected for the storage system when using a particular algorithm.
Throughout the paper, the term compression characteristics refers to compres-
sion ratio/factor and speed for compression and decompression.

In [5], we introduced a generic methodology to scan file features, i.e., certain
file properties, and to infer them for the complete data set using statistical
sampling based on weights. In this paper, we describe the open source tool SFS
to perform these scans and enables even more efficient scans for determining
compression characteristics.

Contributions of this paper are: 1) The introduction of the statistical-file-
scanner (SFS); 2) A evaluation of 150+ compression schemes on different data
pools. This paper is structured as follows: We give a review of related work
in Section 2. The design of SFS is described in Section 3. In Section 4, the
convergence behavior of the method will be analyzed (the section is based on
the analysis conducted in the paper [5] but presents some additional results). The
analysis of data pools using the tool is presented in Section 5. Finally, Section 6
provides a summary and description of future work.

2 Related Work

The related work is structured into compression studies and tools/methods to
analyze data. The compression of text data has been studied in various works
starting from small studies of a few algorithms on a few files, e.g., in [8] to the
evaluation of many algorithms like in Mahoney [7]. Mahoney hosts benchmark
results for compressing the XML dump of the English Wikipedia. Everybody
can contribute by submitting results, so the page now hosts results for more
than 500 compression algorithms.

To optimize the occupied space for backups, deduplication and compression
strategies have been evaluated. For example, DARE applies delta compression on
top of deduplication [9]. For scientific data, some studies have tested a handful of
lossless compression algorithms, e.g., [4], [5], [3]. These studies, however, operate
on a rather small data pool and/or required significant compute time. For floating
point data, lossy data compression schemes like SZ [1] and ZFP [6] promise much
higher compression ratio at the expense of a loss of precision.



SFS: A Tool for Large Scale Analysis of Compression Characteristics 3

The tool LZbench3 is dedicated to evaluate various lossless compression
schemes. Shipping with many state-of-the-art algorithms and even experimental
derivatives, it also provides a framework for conducting evaluations and assess-
ing the results. However, it lacks a few features to efficiently scan huge pools of
data.

In [5], a statistical method is introduced to predict characteristics of file
characteristics for large data sets based on representative samples. This method
allows to estimate file types and, e.g., compression ratio by scanning a fraction
of the files, thus reducing costs. However, the methodology was demonstrated
on a subset of data and by performing costly full file scans.

3 Statistical File Scanner

The Statistical File Scanner (SFS) utilizes the statistical method to estimate the
value for a data characteristics of large data sets without actually requiring to
scan the full data set 4 Goal is to determine the characteristics of files relatively
to the occupied storage space, e.g., 10% of space is occupied by images, or space
could be reduced to 50% using compression algorithm X. This is different from
just computing the mean statistics across all files as that approach would weight
small files equally to large files. The paper in [5] shows the approach to determine
this value correctly based on samples. Particularly, one must estimate the mean
weighted by the size of the files. The more samples are taken, the smaller are the
confidence intervals in the result. The file scanner used for the previous paper is
now refurbished and geared towards the needs for conducting large scale studies
on compression. SFS follow the methodology of this paper and is implemented
as a set of scripts built on top of an extended LZbench.

3.1 Scanning Methodology

The steps for determining the characteristics of files works as follows:

1. Determine the complete list of files together with their file sizes. This scan-
ning the file tree is costly but far less than compressing the full data; it takes
a couple of hours to scan 300 Million files on DKRZ on one node.

2. Create task lists for a number of threads and random samples. Firstly, read
the list of available files assign a probability to each file based on its size
p(size) = size/size all files. Independently draw files for each thread and
task. Indeed (large) files may be selected multiple times in this process!

3. Scan the files. Therefore, threads operate independently on their task list,
scan a file and produce their output with the desired properties.

4. Integrate results. All outputs are parsed, cleaned and input into a database.

3 https://github.com/inikep/lzbench
4 The tool is publicly available: https://github.com/JulianKunkel/statistical-
file-scanner.

https://github.com/inikep/lzbench
https://github.com/JulianKunkel/statistical-file-scanner
https://github.com/JulianKunkel/statistical-file-scanner


4 Julian Kunkel

5. Analyze results using external tools. The mean of a characteristics such as
compression ratio is simply computed by the mean characteristics across all
scanned samples (this includes duplicates of large files).

There are two variants of the scanning process: The full mode scans a file
and when computing the mean, it is weighted according to the number of times it
is drawn in Step 2. For economical reasons, in this case, one file scan is sufficient
but the number of selections must be remembered. The partial mode analyzes
a random chunk of each chosen file. SFS was originally designed having full
file scans in mind, however, for large files and slow compression algorithms this
approach is not feasible. In a test on DKRZ’s supercomputer Mistral, scanning
3 TByte of data took 6 node weeks on 36 cores.

The partial mode is useful for compression: each time a (huge) file is selected,
it picks a random fixed size chunk from the file and determines its compression
characteristics. Using this strategy, one could define to use, e.g., 10,000 random
samples of 10 MiB from the files on a storage pool of arbitrary size and compute
the mean across all these chunks5. This allows to estimate and limit the run-
time. Intermediate results can be used for preliminary analysis and observing
convergence of the method.

Analyzing intermediate results is supported in both modes, but in full mode
with caution as the compression time depends on the file size (and selected
memory limit). In a pathetic case, one has 100 small files and 10 large files;
starting 10 threads and stopping them quickly leads to the situation where some
small files are scanned but no large file.

3.2 Architecture of SFS

SFS uses Bash and Python scripts for the scanning and LZbench as file scanner.
Time consuming steps of the processing are parallelized6:

1. Scan directories. This Bash script starts from a work directory and runs
one ls -R in parallel for each top level directory found – up to a chosen
number of processes. Each top-level directory is stored as project name for
the analysis.

2. Select Files for a user-defined number of threads and random samples. This
Python script parses the scanner output and creates one task file for each
thread. In full mode, it detects if a file is repeatedly assigned to a thread
and marks this file to prevent repeated parsing.

3. Run scanner. This Bash script runs a number of worker threads on the
current node – each working on their task list (see below).

4. Create DB – parses output; checks for some inconsistencies, integrates the
results into an SQL-lite database. Allows incremental import.

5. Analyze results of the database, e.g., using R.

5 Small chunks are weighted equally to large chunks but are drawn less likely.
6 Supporting single node parallelism, the actual scanning process can be distributed

across multiple nodes.



SFS: A Tool for Large Scale Analysis of Compression Characteristics 5

Scanning thread: A thread reads the task list sequentially. In each line a file
to scan with its size is specified. It first checks if the file’s size is still the same
when creating the file list. Otherwise it ignores this file as the file was modified
in the mean time and, thus, the probability to select the file changed7. It then
first runs the file and cdo8 commands to determine the file types to allow an
analysis based on the file format. Next the modified LZbench is run and output
is stored into a thread-local log file.

LZbench scans a single file by reading a fixed amount of data9 and outputs
for each algorithm the name, the compression and decompresison time10 and
the original and compressed size of the chunk. It ensures that even for small
files a compression/decompression phase is repeated to run for at least 1 second.
The algorithms to test can be configured in the script, by default up to 160
variants of algorithms are tested. LZbench does not measure time for I/O. To
make LZbench work on the large scale, several modifications to LZbench have
been done11. Noteworthy changes are: 1) restricting the available main memory
12; 2) to randomize the data retrieval from huge files, i.e., by randomly sampling
a fixed amount of data from huge files. While the first extension enables scanning
of huge files in chunks and reports the statistics for each chunk, the latter allows
to randomly pick a position in a large file and scan a determined amount of data
from this position.

The scanning thread distinguishes between the full and partial mode: In full
mode, one scan of a file is sufficient, therefore, repeated scans must be prevented.
The Python script will already check if a file is selected again by the same thread
and, thus, has been scanned already by this thread when sequentially processing
the file list. However, a file may have been selected for different threads. The
first thread that reaches the file in the list must process it13. Since we do not
know which thread will process the file first, we keep a SQLlite database that
records all completely scanned files.

The database is also used for a lightweight restart mechanism. Before starting
to scan the next file, each thread will update its position. Upon start, it checks
the task list and database to identify where to restart. In partial mode, a file
is scanned repeatedly but (typically) on different regions. Therefore, multiple
scans of the file are allowed and handled correctly.

7 We assume the files on the large file system do not change rapidly between scanning
of the directories and running LZbench.

8 The Climate Data Operator tool https://code.zmaw.de/projects/cdo supports
many scientific file types and is more robust to detect them correctly.

9 In full mode, this step is repeated in chunks of the specified memory size.
10 If an algorithm is unable to decompress the data, then the decompression time is

recorded as 0.
11 Most extensions are now merged back in the public development branch of LZbench.
12 Previously LZbench required to load the complete file into memory prior analysis

which is prohibitive for huge files.
13 This is necessary for analyzing intermediate results.

https://code.zmaw.de/projects/cdo


6 Julian Kunkel

3.3 Limitations of the Scanning Process

The determined performance characteristics of algorithms depend on the CPU
performance and memory throughput. However, depending on the evaluated al-
gorithms and the number of concurrent threads, the problem becomes either
bound by compute or memory. For example, when using fast compressing al-
gorithms, they are memory bound while slow ones are CPU bound. Modern
many-core architectures need to run more than one memory intensive thread to
saturate the memory bus anyway, so running a few threads even with memcopy
does not harm the individual performance much. At some point, the memory
bus is saturated. In that sense, the selection of algorithms and the number of
threads to run influence the reported performance.

LZbench performs the operations in the two phases: read data, then apply
all algorithms. If only a single fast algorithm is selected and I/O is much slower
than memory throughput, the ensemble of threads is typically reading the input
file; even with a number of threads equal to the available cores, it is expected
that the ensemble is not memory bound. With fast I/O and when using only
fast algorithms and many threads, the ensemble may become memory bound.
Due to these considerations, in typical setups (evaluate different algorithms,
use a number of threads up to the number of physical cores), it is expected that
memory congestion is low and results are comparable to single core performance.

It might be the goal to measure the performance of a compression algorithms
when using all existing cores at the same time. In particular, this might be
relevant for bulk synchronous HPC applications. This is not yet possible with
SFS and the single threaded LZbench.

4 Convergence of the Sampling Strategy

The main requirement of the used sampling strategy is to allow to estimate the
compression characteristics for the pool of data. That means, for example, that
the determined compression ratio should describe the saved storage space when
using a compression algorithm. Note that this is not the arithmetic or harmonic
mean ratio across all files. Instead, we want to compute the mean compression
ratio according to Equation (1).

ratiosize =

∑
f compr.size(f)∑
f file size(f)

(1)

To compute the ratiosize with sampling, we apply the following strategy:
Pick a random sample from the file list based on the probability defined by file-
size/totalsize. Draws from the list is done with replacement, i.e., we never remove
any picked file. For each chosen file, the compression characteristics (including
ratiosize) are computed. Then the arithmetic mean can be computed across the
invidual results to obtain the correct characteristics. Thus large files are more
likely to be picked but each time their characteristics are weighted identically as



SFS: A Tool for Large Scale Analysis of Compression Characteristics 7

for small files. In [5], it is demonstrated that this is the correct approach and a
simply random sampling strategy does not provide converging results.

To evaluate the convergence for several characteristics, we use the data from
[5]. We simulate the convergence, by first capturing the characteristics of a large
data pool (380k files and 53.1 TiB capacity). Then we randomly draw a certain
number of samples using our sampling strategy and compute the mean. This
process is repeated 100 times each for an increasing number of samples. Box
plots about these characteristics are shown in Figure 1. The figure shows the
compression ratio for several algorithms, the determined proportion a given file
type occupies on the storage and compression and decompression rate. It can
be seen that with an increase of samples, the number of outliers is reduced, and
the interquartile range becomes shorter. For example, by drawing 1024 samples
multiple times, the ratio for gzip is between 0.58 and 0.6 without outliers, thus
all 100 tries of the experiment come to nearly the same conclusion of the mean
compression ratio.

While this experiment used results where characteristics are measured on
individual file level (full mode in SFS), the overall convergence behavior applies
also to the partial mode of SFS. The reason is that logically partial mode is
similar to randomly select used data blocks on the file system and measure their
compression characteristics.

5 Evaluation

SFS is run on two cluster systems: The WR cluster is a small research cluster
with 50 nodes. The supercomputer Mistral at DKRZ is equipped with 3000
nodes and 52 Petabyte of storage14. As the evaluation needs root privileges
to allow scanning of all files, the access to Mistral was limited. In the case of
DKRZ, the full file scan strategy was applied, while for WR the partial mode is
explored. LZbench is configured to run all supported compressors with variants
of compression levels. This lead to a configuration with 162 algorithms. We will
focus on the results on the WR cluster, then compare them to DKRZ results.

5.1 Test Environment

In both cases a single compute nodes is used for SFS: WR: A quad socket AMD
Opteron 6344 with 2.6 GHz and 12 cores, Gigabit Ethernet. 12 threads are run
with the scanner using the partial mode and a chunk size of 10 MB. During
a three day run, 4403 random samples have been drawn from 3118 files. The
samples cover a volume of 38.1 GByte out of the 1.1 TByte, where the selected
files occupy 500 GByte.

DKRZ: A dual socket Intel Xeon E5-2695V4 with 2.1 Ghz and 18 cores,
Infinband FDR. 36 threads are run for the scanner. During a 5 week run, 70
files with a total size of 3 TB have been completely scanned using the described
methodology. As we will see the results are still quite comparable.

14 See https://www.vi4io.org/hpsl

https://www.vi4io.org/hpsl


8 Julian Kunkel

(a) Drawing 16 samples with replacement

●●

●

●●

● ●

●
●

●

gzip zip bzip2 lzma

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

C
om

pr
es

se
d 

%

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

%
 o

f f
ile

s

ne
tC

D
F

ne
tC

D
F2

ne
tC

D
F4

G
R

IB
ot

he
rs

un
kn

ow
n

●

Comp. Deco.

0
50

10
0

15
0

20
0

S
pe

ed
 fo

r 
Z

IP
 in

 M
iB

/s

(b) Drawing 256 samples with replacement

●

gzip zip bzip2 lzma

40
45

50
55

60
65

70

C
om

pr
es

se
d 

%

●

●

●●
●●0

10
20

30
40

50
60

%
 o

f f
ile

s

ne
tC

D
F

ne
tC

D
F2

ne
tC

D
F4

G
R

IB
ot

he
rs

un
kn

ow
n

●

●

Comp. Deco.
0

50
10

0
15

0
20

0

S
pe

ed
 fo

r 
Z

IP
 in

 M
iB

/s

(c) Drawing 1024 samples with replacement

gzip zip bzip2 lzma

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

C
om

pr
es

se
d 

%

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

%
 o

f f
ile

s

ne
tC

D
F

ne
tC

D
F2

ne
tC

D
F4

G
R

IB
ot

he
rs

un
kn

ow
n

●

Comp. Deco.

0
50

10
0

15
0

20
0

S
pe

ed
 fo

r 
Z

IP
 in

 M
iB

/s

(d) Drawing 16384 samples with replacement

●
●●
● ●

●●
●

●
●
●

●
●

gzip zip bzip2 lzma

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

C
om

pr
es

se
d 

%

●

●●
●

●●●

0.
0

0.
2

0.
4

0.
6

0.
8

%
 o

f f
ile

s

ne
tC

D
F

ne
tC

D
F2

ne
tC

D
F4

G
R

IB
ot

he
rs

un
kn

ow
n Comp. Deco.

0
50

10
0

15
0

20
0

S
pe

ed
 fo

r 
Z

IP
 in

 M
iB

/s

Fig. 1: Simulated convergence behavior of various characteristics



SFS: A Tool for Large Scale Analysis of Compression Characteristics 9

Data pools: The scientific computing (WR) group provides a data pool for sev-
eral data sets with currently 1.1 TB of data. It consists of three different types
of data: 1) A variety of relevant data from the German Electron Synchrotron
(DESY) consisting of images and HDF5 files; 2) Directories of data prepared for
the student cluster competition of ISC consisting of system files, various scien-
tific applications and their input and output files; 3) Data for the ECOHAM5
ecosystem model. The DKRZ file system offers a space of 52 Petabytes occupied
by 300 million files. 80% of the files are small (some KiB), but the capacity is
mainly used by scientific files in NetCDF, GRIB and HDF5 format.

5.2 Study of the WR data pool

The characteristics of the algorithms for the complete WR data pool are plot-
ted in Figure 2 15. Each point represents the mean characteristics for a single
algorithm; the axes show the ratio and compression speed of it and the color
encodes the decompression speed as a third dimension.

There are roughly two diagonal lines between ratio 0.5 and ratio 0.6 and
between 0.6 to 1.0. As the figure suggests, there is a correlation between ra-
tio and the decompression speeds: The Pearson correlation coefficient between
the ratio and the logarithmic compression and decompression speed is 0.72 and
0.76, respectively. That means that starting with the algorithm of the best com-
pression ratio, the performance increases exponentially with a linear decrease in
compression ratio. Between both speeds the correlation is weaker (0.61), since
some compressors are designed for fast decompression. Similar correlations are
obtained when subsetting the data for ratios < 0.6 and > 0.6, indicating that
algorithms in these sections follow different strategies.

As the data pool of WR can be easily split into several use cases, we analyze
the compression characteristics of each subpool individually. Table 1 and Table 2

15 Some algorithms failed to compress a fraction of chunks correctly: blosclz, density,
lzmat, lz5hc15-1, pithy & tornado06a. Tornado06a-1 and density failed for 37% and
8% of chunks, respectively; others failed below 0.2% of chunks. In the computation
of means, erroneous chunks are excluded.

Fig. 2: Comparison of algorithms for the full WR pool



10 Julian Kunkel

show the characteristics of all algorithms as a heatmap. The algorithm encodes
the name, e.g., blosclz, then, separated by dashes, the date of the code version
may be added and finally comes the compression level – the higher the level, the
more CPU time is spend to increase the compression ratio. Sometimes instead
of the date of the code a code version is given. Green is the best value and
red the worst. Several interesting aspects of the compressors can be identified:
Firstly, the SCC pool behaves differently in respect to compression ratio than the
scientific data in DESY and ECO5. DESY and ECO5 show a similar compression
ratio. The compression and decompression speed between pools are typically
between 0.5 to 2x between the pools. Memcopy serves here as a reference for the
achievable throughput with 4-5 GiB/s.

5.3 Identifying Useful Algorithms

Based on the analysis, one could judge that a general purpose algorithm such
as LZ4fast is applicable across all subpools. To identify candidate algorithms for
global usage, e.g., within file systems, we treat the subpools of the WR data as
a single pool.

To reduce the search space for humans, the analysis scripts supports to filter
algorithms inferior to another algorithm. Therefore, it checks the combination of
all algorithms: An algorithm A is inferior to algorithm B iff A.ratio ≥ B.ratio and
A.comprSpeed < B.comprSpeed and A.decoSpeed < B.decoSpeed. Applying the
script to the complete data set, 70 algorithms remain from the 162 algorithms.

We can identify interesting classes of algorithms: balanced algorithms achieve
similar compression and decompression speeds with a acceptable compression
ratio, read-optimized algorithms compress slowly but decompress fast and the
best algorithms in a category. A selection of these algorithms is shown in Table 3.
CSC35-5 and ZLIB17 yield the highest ratio but very low compression ratio.
LZ5HCR and LZSSSE2 are read-optimized algorithms with a good ratio while
BLOSC yields much worse ratio.

For the DKRZ data, the results have been filtered similarly and are also
included in the table. While the mean compression ratio is slightly different to
the WR data pool, the ordering of algorithms is still quite similar. Performance is
in many cases comparable but at the upper end, LZ4fast and Pithy achieve now
a much better performance. The performance of LZ4fast is even higher than the
memory throughput (therefore, memcpy is purged by the algorithm). It could
actually accelerate computation of memory-bound workloads!

To verify this result under a memory-bound load, one big (full mode) test of
40k files has been conducted on DKRZ running only the Pithy and LZ4fast-17
algorithms. This test revealed a throughput for memcpy of 735 MiB/s and 980
and 1290 MiB/s for LZ4fast (compress/decompress), respectively. In this test,
many of the 36 started threads compete for memory bandwidth. Here, the mean
ratio for LZ4fast is 0.645, a bit worse compared to the small scan of 70 files.

6 Summary
In this paper, the SFS tool for identifying compression characteristics has been
introduced. While relying on an extended LZBench as the vehicle to determine



SFS: A Tool for Large Scale Analysis of Compression Characteristics 11

Algorithm Ratio Compr. in MiB/s Decompr. in MiB/s
SCC DESY ECO5 SCC DESY ECO5 SCC DESY ECO5

blosclz2015-11-10-1 0.797 0.978 0.962 824.4 783.7 993.7 2466.6 2531.0 2467.3

blosclz2015-11-10-3 0.755 0.964 0.927 501.5 462.9 652.0 2470.4 2751.3 2610.1

blosclz2015-11-10-6 0.577 0.917 0.850 214.0 164.7 306.0 1220.3 2236.3 2098.0

blosclz2015-11-10-9 0.538 0.848 0.816 160.7 109.6 237.3 782.7 548.1 1457.5

brieflz110 0.523 0.806 0.863 83.9 59.4 114.9 144.6 100.2 193.1

brotli052-0 0.475 0.689 0.745 226.6 138.6 261.2 191.6 128.8 188.2

brotli052-2 0.440 0.657 0.724 101.4 68.3 121.9 180.0 132.4 174.9

brotli052-5 0.419 0.643 0.696 20.8 13.3 22.8 183.4 133.3 197.1

brotli052-8 0.412 0.638 0.694 6.4 4.0 5.9 188.2 135.8 205.9

brotli052-11 0.391 0.596 0.656 0.3 0.2 0.1 143.3 87.5 154.2

crush10-0 0.497 0.740 0.822 7.9 10.2 19.6 149.8 108.1 203.7

crush10-1 0.481 0.721 0.822 5.0 2.7 11.7 158.0 111.4 227.3

crush10-2 0.475 0.709 0.817 1.5 0.7 2.7 160.2 109.2 231.9

csc33-1 0.402 0.577 0.653 9.5 6.3 10.0 22.5 14.2 23.4

csc33-3 0.393 0.553 0.650 6.1 4.2 8.4 21.8 12.9 23.2

csc33-5 0.388 0.552 0.648 3.7 2.9 5.4 22.1 13.0 23.3

density0125beta-1 0.720 0.813 0.863 594.8 580.8 651.5 755.9 687.8 761.7

density0125beta-2 0.580 0.765 0.809 426.1 381.6 629.9 490.7 480.1 608.2

density0125beta-3 0.532 0.725 0.788 168.0 164.3 235.2 148.8 152.7 190.3

fastlz01-1 0.547 0.848 0.821 150.1 110.7 188.5 527.2 469.5 994.4

fastlz01-2 0.539 0.848 0.817 166.4 119.8 208.0 540.7 437.9 1009.5

gipfeli2016-07-13 0.521 0.779 0.807 271.6 171.7 376.6 541.0 364.1 987.5

libdeflate16-08-29-1 0.451 0.663 0.715 65.8 48.9 85.9 149.6 207.9 420.4

libdeflate16-08-29-3 0.445 0.661 0.713 61.1 44.2 84.0 336.0 211.0 424.2

libdeflate16-08-29-6 0.440 0.658 0.711 49.6 35.3 75.0 343.5 214.8 432.2

libdeflate16-08-29-9 0.433 0.645 0.705 12.5 12.0 20.2 338.5 208.7 434.9

libdeflate16-08-29-12 0.430 0.642 0.704 6.3 7.2 6.4 342.1 209.7 448.4

lz4fastr131-3 0.558 0.884 0.823 685.2 578.0 916.9 1843.1 2056.0 2528.9

lz4fastr131-17 0.601 0.907 0.840 1019.5 1172.2 1561.2 2075.8 2381.6 2589.3

lz4hcr131-1 0.514 0.804 0.795 66.1 46.7 80.3 1472.8 1294.8 2294.0

lz4hcr131-4 0.492 0.766 0.788 37.5 23.7 48.7 1553.5 1307.4 2388.7

lz4hcr131-9 0.485 0.756 0.786 19.6 15.0 20.4 1586.1 1335.4 2496.3

lz4hcr131-12 0.485 0.755 0.786 10.1 9.4 7.1 1595.8 1341.0 2519.3

lz4hcr131-16 0.485 0.755 0.785 2.8 3.6 2.4 1600.8 1341.6 2532.1

lz4r131 0.543 0.870 0.814 539.5 403.8 602.9 1765.8 1911.7 2462.1

lz515 0.505 0.801 0.792 292.3 182.9 319.8 1017.8 681.2 1862.7

lz5hc15-1 0.573 0.897 0.816 403.2 321.9 621.6 1606.1 2020.3 2558.9

lz5hc15-4 0.502 0.793 0.783 91.2 58.9 124.6 990.1 729.2 1849.0

lz5hc15-9 0.477 0.765 0.778 3.6 7.0 14.9 810.8 364.8 1307.7

lz5hc15-12 0.461 0.747 0.769 6.2 4.3 12.7 786.8 351.1 1268.6

lz5hc15-15 0.457 0.739 0.769 0.6 1.9 0.8 835.5 331.9 1413.9

lzf36-0 0.561 0.871 0.818 168.2 123.6 223.0 478.2 445.0 871.4

lzf36-1 0.540 0.825 0.817 164.2 120.6 223.8 485.9 437.1 867.5

lzfse2016-08-16 0.445 0.658 0.716 36.3 30.2 47.3 330.0 261.7 463.0

lzg108-1 0.549 0.837 0.812 10.1 20.3 27.5 346.2 307.9 478.9

lzg108-4 0.528 0.826 0.797 9.0 12.7 23.7 351.2 299.6 481.9

lzg108-6 0.516 0.816 0.794 8.0 8.3 20.2 355.2 298.4 486.1

lzg108-8 0.504 0.798 0.790 5.5 3.8 11.6 363.0 315.1 492.6

lzham10-d26-0 0.415 0.601 0.660 4.8 3.9 5.3 100.4 62.8 131.5

lzham10-d26-1 0.398 0.580 0.654 1.8 1.3 1.9 107.9 67.4 133.0

lzjb2010 0.612 0.915 0.892 169.4 132.4 218.5 351.8 306.9 460.1

lzlib17-0 0.421 0.619 0.651 11.0 8.1 13.9 18.7 13.0 23.1

lzlib17-3 0.396 0.579 0.638 3.4 2.0 4.6 19.7 13.8 23.9

lzlib17-6 0.384 0.571 0.632 2.3 1.6 3.4 20.1 14.2 24.3

lzlib17-9 0.383 0.568 0.630 1.5 1.5 1.1 20.1 14.1 24.6

lzma938-0 0.418 0.616 0.674 11.5 8.1 14.8 26.1 17.9 32.8

lzma938-2 0.408 0.609 0.675 9.5 6.4 12.4 27.2 19.2 33.4

lzma938-4 0.403 0.600 0.675 5.6 3.7 7.5 27.8 20.2 34.1

lzma938-5 0.384 0.571 0.632 2.3 1.9 4.3 28.1 20.3 34.5

lzmat101 0.478 0.759 0.798 14.5 8.3 23.9 308.0 282.1 424.2

lzo1209-1 0.545 0.849 0.811 114.5 82.4 137.4 547.6 442.8 1123.0

lzo1209-99 0.520 0.808 0.803 43.8 31.4 57.4 442.5 399.0 721.4

lzo1a209-1 0.538 0.808 0.797 112.0 79.6 135.8 692.9 623.1 1353.3

lzo1a209-99 0.513 0.770 0.788 41.4 29.7 54.2 527.8 537.6 867.5

lzo1b209-1 0.529 0.825 0.799 98.1 65.5 118.3 641.3 581.4 1557.2

lzo1b209-3 0.524 0.811 0.798 94.7 65.8 114.0 640.7 602.8 1531.2

lzo1b209-6 0.515 0.788 0.791 114.5 80.1 144.1 612.6 582.3 1356.1

lzo1b209-9 0.512 0.787 0.790 81.5 59.4 98.0 562.5 542.8 1073.8

lzo1b209-99 0.504 0.782 0.789 39.2 26.3 44.6 566.4 496.3 1215.3

lzo1b209-999 0.480 0.752 0.782 7.5 6.7 7.1 592.7 464.0 1372.7

lzo1c209-1 0.532 0.823 0.800 97.7 68.0 124.9 667.1 658.3 1564.7

lzo1c209-3 0.528 0.809 0.799 96.3 68.2 126.8 664.4 672.0 1524.4

lzo1c209-6 0.517 0.783 0.791 84.4 61.7 107.3 619.9 632.6 1342.3

lzo1c209-9 0.513 0.779 0.790 68.5 50.8 80.4 572.2 594.6 1068.6

lzo1c209-99 0.505 0.772 0.789 35.7 25.1 43.6 579.4 562.4 1222.5

lzo1c209-999 0.485 0.748 0.781 10.0 11.1 8.2 601.2 520.0 1399.0

lzo1f209-1 0.534 0.826 0.801 88.1 59.6 114.6 572.6 522.5 1408.2

lzo1f209-999 0.488 0.768 0.787 8.7 9.1 7.1 496.2 361.2 1101.0

lzo1x209-1 0.546 0.865 0.832 619.3 544.9 1038.2 671.9 903.2 1976.9

lzo1x209-11 0.555 0.876 0.835 725.1 689.7 1281.8 686.9 949.8 2008.8

lzo1x209-12 0.550 0.871 0.833 687.5 629.6 1195.2 676.9 921.5 1986.6

lzo1x209-15 0.547 0.867 0.833 646.2 573.4 1102.5 672.8 908.5 1981.3

lzo1x209-999 0.475 0.741 0.776 4.2 3.1 6.3 500.8 370.2 1227.6

Table 1: Characteristics for the different file pools



12 Julian Kunkel

Algorithm Ratio Compr. in MiB/s Decompr. in MiB/s
SCC DESY ECO5 SCC DESY ECO5 SCC DESY ECO5

lzo1y209-1 0.547 0.868 0.832 616.1 541.8 1035.7 670.8 919.4 1970.8

lzo1y209-999 0.476 0.747 0.777 4.3 3.1 6.3 504.0 388.2 1242.1

lzo1z209-999 0.473 0.742 0.774 4.1 3.0 6.2 486.6 361.1 1195.6

lzo2a209-999 0.507 0.755 0.812 10.4 11.2 9.9 323.9 239.2 598.6

lzrw15-Jul-1991-1 0.593 0.842 0.849 143.1 106.3 182.6 533.6 554.8 694.2

lzrw15-Jul-1991-2 0.587 0.841 0.847 139.8 103.7 178.3 560.5 594.1 673.4

lzrw15-Jul-1991-3 0.574 0.830 0.843 164.7 123.2 211.1 579.0 557.5 718.1

lzrw15-Jul-1991-4 0.566 0.816 0.839 163.7 121.9 209.9 471.3 390.4 529.5

lzrw15-Jul-1991-5 0.548 0.799 0.836 60.0 45.8 68.4 440.8 357.7 484.2

lzsse22016-05-14-1 0.530 0.799 0.838 13.9 12.3 17.1 1504.2 1068.5 1624.7

lzsse22016-05-14-6 0.495 0.743 0.826 7.9 6.8 14.1 1606.9 1125.4 1671.9

lzsse22016-05-14-12 0.495 0.743 0.826 7.7 7.0 14.2 1605.5 1125.5 1665.3

lzsse22016-05-14-16 0.495 0.743 0.826 7.7 7.0 14.2 1613.6 1125.6 1667.0

lzsse42016-05-14-1 0.516 0.775 0.835 13.3 11.4 17.9 1847.4 1452.2 2261.1

lzsse42016-05-14-6 0.498 0.754 0.830 8.9 8.5 14.9 1937.5 1508.3 2248.1

lzsse42016-05-14-12 0.498 0.754 0.830 8.7 8.8 15.1 1918.9 1508.1 2242.3

lzsse42016-05-14-16 0.498 0.754 0.830 8.7 8.8 15.0 1945.5 1506.1 2243.5

lzsse82016-05-14-1 0.514 0.768 0.826 11.0 9.4 14.8 1839.5 1546.1 2520.1

lzsse82016-05-14-6 0.494 0.746 0.820 7.9 7.3 12.9 1922.4 1610.0 2435.1

lzsse82016-05-14-12 0.494 0.746 0.820 7.7 7.6 13.1 1925.2 1609.6 2432.3

lzsse82016-05-14-16 0.494 0.746 0.820 7.7 7.6 13.0 1938.0 1608.3 2426.3

lzvn2016-08-16 0.495 0.789 0.800 33.5 25.9 42.3 556.0 446.4 820.4

memcpy 1.000 1.000 1.000 3840.6 5041.5 4889.2 4192.7 4963.2 4864.5

pithy2011-12-24-0 0.551 0.875 0.828 595.1 438.1 1102.2 1443.1 1323.2 2461.6

pithy2011-12-24-3 0.540 0.857 0.826 537.4 341.6 1026.8 1342.1 1132.9 2305.6

pithy2011-12-24-6 0.527 0.829 0.822 466.4 264.8 857.5 1312.8 972.4 2230.6

pithy2011-12-24-9 0.524 0.823 0.821 406.2 226.4 747.2 1289.6 928.9 2186.2

quicklz150-1 0.536 0.832 0.826 307.1 268.3 398.4 560.6 469.4 586.7

quicklz150-2 0.510 0.790 0.819 116.0 96.8 134.7 463.3 308.2 528.6

quicklz150-3 0.508 0.787 0.817 34.3 26.6 33.7 769.2 588.7 973.0

shrinker01 0.522 0.812 0.794 236.1 157.0 348.6 863.8 966.5 1890.3

slz-zlib100-1 0.536 0.854 0.813 164.0 125.9 212.3 272.1 258.8 330.1

slz-zlib100-2 0.532 0.850 0.809 164.3 124.1 216.2 270.6 249.6 329.0

slz-zlib100-3 0.530 0.849 0.809 163.7 123.4 217.0 270.3 247.3 328.7

snappy113 0.551 0.850 0.817 409.3 284.8 662.5 1045.6 950.4 1701.9

tornado06a-1 0.433 0.885 0.783 209.4 114.5 272.5 305.5 197.2 484.3

tornado06a-2 0.547 0.860 0.873 125.9 86.6 172.6 248.7 186.3 376.3

tornado06a-3 0.454 0.668 0.700 66.0 45.8 86.0 85.4 62.4 114.9

tornado06a-4 0.448 0.661 0.700 49.4 34.7 61.8 86.6 63.9 116.5

tornado06a-5 0.433 0.657 0.696 18.6 12.3 23.0 66.0 44.9 81.2

tornado06a-6 0.431 0.655 0.695 12.3 8.1 14.4 66.5 45.2 81.5

tornado06a-7 0.423 0.649 0.692 7.0 4.8 8.5 67.7 46.1 81.4

tornado06a-10 0.422 0.647 0.691 2.0 1.3 2.5 68.2 46.2 83.0

tornado06a-13 0.412 0.629 0.687 5.2 3.9 8.6 69.2 47.5 82.8

tornado06a-16 0.410 0.619 0.687 2.8 2.1 2.6 70.0 50.1 84.4

ucl-nrv2b103-1 0.506 0.762 0.801 20.3 14.7 25.0 178.4 112.0 237.6

ucl-nrv2b103-6 0.485 0.737 0.791 10.8 5.5 17.3 187.9 112.7 255.2

ucl-nrv2b103-9 0.480 0.747 0.800 2.0 0.8 4.0 184.0 105.9 238.2

ucl-nrv2d103-1 0.506 0.761 0.804 20.4 14.7 25.1 182.4 113.7 254.8

ucl-nrv2d103-6 0.486 0.736 0.795 11.0 5.7 18.0 192.0 113.7 270.9

ucl-nrv2d103-9 0.479 0.737 0.799 2.1 0.8 4.2 186.3 105.2 246.0

ucl-nrv2e103-1 0.506 0.762 0.804 20.4 14.7 25.0 183.5 116.5 255.2

ucl-nrv2e103-6 0.486 0.738 0.795 11.0 5.6 17.8 192.6 116.0 269.1

ucl-nrv2e103-9 0.478 0.739 0.798 2.1 0.9 4.1 187.7 107.1 245.2

wflz2015-09-16 0.571 0.877 0.811 93.1 69.5 155.2 838.4 700.5 1244.4

xpack2016-06-02-1 0.441 0.657 0.704 57.8 41.4 71.6 287.8 204.3 485.9

xpack2016-06-02-6 0.423 0.641 0.698 20.7 13.3 31.4 329.1 224.8 522.9

xpack2016-06-02-9 0.421 0.639 0.697 15.4 9.5 26.1 333.3 227.7 545.1

xz522-0 0.415 0.609 0.674 8.8 5.8 11.1 23.3 16.4 29.3

xz522-3 0.401 0.598 0.674 4.3 2.2 6.0 24.5 17.9 30.0

xz522-6 0.383 0.571 0.631 2.5 1.7 4.1 24.5 17.7 29.6

xz522-9 0.383 0.571 0.631 2.3 1.8 4.3 24.2 17.6 29.3

yalz772015-09-19-1 0.523 0.833 0.798 36.6 25.1 46.0 386.0 382.6 502.7

yalz772015-09-19-4 0.510 0.822 0.794 20.0 14.5 25.5 398.2 350.0 614.2

yalz772015-09-19-8 0.507 0.818 0.792 12.6 9.1 15.8 401.5 340.8 620.8

yalz772015-09-19-12 0.505 0.814 0.791 9.5 7.0 12.0 402.0 334.4 634.2

yappy2014-03-22-1 0.628 0.869 0.868 59.7 45.9 76.3 1385.3 1539.1 2117.0

yappy2014-03-22-10 0.566 0.852 0.840 49.6 43.4 62.5 1675.2 1614.3 2606.0

yappy2014-03-22-100 0.547 0.846 0.835 37.7 38.9 45.9 1792.3 1642.8 2796.3

zlib128-1 0.465 0.671 0.716 34.9 23.4 42.5 200.8 138.5 251.9

zlib128-6 0.443 0.662 0.708 14.9 8.3 25.1 201.6 146.8 256.9

zlib128-9 0.440 0.660 0.707 6.0 5.6 10.6 204.7 147.9 266.1

zling2016-01-10-0 0.438 0.635 0.711 12.0 11.3 19.8 52.1 47.4 88.5

zling2016-01-10-1 0.436 0.634 0.711 11.6 10.8 18.9 52.3 47.5 88.8

zling2016-01-10-2 0.436 0.634 0.710 11.4 10.6 18.7 52.4 47.5 88.4

zling2016-01-10-3 0.435 0.634 0.710 11.2 10.2 18.4 52.4 47.4 88.3

zling2016-01-10-4 0.435 0.633 0.710 11.1 10.0 18.0 52.4 47.4 88.2

zstd100-1 0.464 0.667 0.727 250.3 197.6 263.6 539.6 420.3 693.1

zstd100-2 0.452 0.662 0.720 214.5 149.3 213.5 517.0 386.3 674.7

zstd100-5 0.437 0.646 0.711 84.6 54.6 75.2 503.4 309.5 638.1

zstd100-8 0.428 0.641 0.706 41.9 20.5 40.9 531.6 309.5 650.7

zstd100-11 0.425 0.638 0.704 23.6 9.4 24.3 540.8 296.9 648.2

zstd100-15 0.424 0.636 0.703 8.1 4.9 11.9 553.8 304.6 685.9

zstd100-18 0.415 0.624 0.701 4.3 2.8 8.1 544.8 290.8 652.0

zstd100-22 0.407 0.609 0.694 2.6 1.9 2.6 477.4 203.3 578.8

Table 2: Characteristics for the different file pools (2)



SFS: A Tool for Large Scale Analysis of Compression Characteristics 13

Algorithm Ratio Compr.
MiB/s

Decom.
MiB/s

csc33-5 0.485 3.4 16.7

lzlib17-9 0.491 1.4 17.0

xz522-9 0.493 2.1 20.8

lzma938-5 0.493 2.2 24.2

brotli052-11 0.510 0.2 110.6

lzma938-2 0.526 7.9 23.1

zstd100-22 0.526 2.2 294.3

xpack2016-06-02-9 0.548 12.3 282.9

brotli052-5 0.549 16.5 156.6

xpack2016-06-02-6 0.549 16.9 278.9

zstd100-11 0.549 13.8 394.0

zstd100-2 0.574 177.6 455.3

lz4hcr131-16 0.640 3.1 1522.2

lzsse22016-05-14-16 0.640 7.7 1341.6

lz4hcr131-12 0.640 9.4 1519.5

lz4hcr131-9 0.640 17.2 1511.5

lz4hcr131-4 0.649 30.0 1477.8

lz515 0.673 229.2 858.6

density0125beta-2 0.683 419.4 496.5

pithy2011-12-24-9 0.694 305.9 1131.4

lzo1x209-1 0.726 606.7 833.7

lz4r131 0.726 469.8 1893.1

lz4fastr131-3 0.741 646.1 2001.1

lz4fastr131-17 0.772 1132.7 2263.1

blosclz2015-11-10-3 0.872 494.4 2612.6

blosclz2015-11-10-1 0.900 819.4 2496.9

memcpy 1.000 4449.1 4602.0

(a) WR data

Algorithm Ratio Compr.
MiB/s

Decom.
MiB/s

lzlib17-9 0.426 1.5 22.0

xz522-9 0.427 2.2 24.3

lzma938-5 0.431 2.9 29.1

lzham10-d26-1 0.445 1.4 113.3

csc33-3 0.445 6.5 23.3

brotli052-11 0.451 0.3 124.5

lzma938-0 0.473 13.0 28.2

zstd080-22 0.476 1.1 260.7

brotli052-5 0.489 18.4 165.6

zstd080-18 0.496 3.9 434.4

xpack2016-06-02-9 0.498 19.3 386.8

xpack2016-06-02-1 0.504 53.5 362.0

zstd080-5 0.511 69.4 560.8

brotli052-2 0.512 126.6 168.7

zstd080-2 0.518 220.9 594.0

zstd080-1 0.523 355.0 633.9

lzo1c209-999 0.566 13.5 939.5

lz5hc15-4 0.574 126.3 1410.1

lz515 0.576 326.9 1934.9

lz4hcr131-16 0.577 3.1 2720.6

lz4hcr131-12 0.577 12.4 2700.8

lz4hcr131-9 0.577 28.4 2670.3

lzo1b209-6 0.578 143.3 992.5

lz4r131 0.599 951.4 3037.4

lz4fastr131-3 0.603 1272.6 3215.6

pithy2011-12-24-3 0.613 1787.5 3535.2

lz4fastr131-17 0.614 1904.8 3610.3

(b) DKRZ data

Table 3: Selected algorithms with good properties (sorted by ratio)

characteristics per file chunks, the contribution of this paper is in the method-
ology to infer characteristics of the data pool from data samples – a strategy
that has been previously analyzed and is briefly recapitulated and demonstrated
for compression characteristics in this paper. By analyzing random chunks of
large files, SFS is able to scan huge data pools. Showing the features of 162
compression algorithms, some relevant algorithms could be identified. It turned
out the compressors characteristics across different data pools of scientific data
and systems are comparable. LZ4fast bears a great potential to optimize not
only storage capacity but also improve memory throughput for memory bound
workloads. Future work is to extend the LZbench tool to coordinate the scanner
emulating memory congestion of bulk synchronous HPC applications.

Acknowledgements

I would like to thank the people providing the data used for the study. In par-
ticular, the scientists at DESY that provided data from various DESY Photon
Science Experiments at PETRA III (http://petra3.desy.de/) and DORIS, A.
Rothkirch and Beamlines A2, G3, P02.1, P02.2, P03, P06 and P11.

References

1. Sheng Di and Franck Cappello. Fast error-bounded lossy HPC data compression
with SZ. In Parallel and Distributed Processing Symposium, 2016 IEEE Interna-
tional, pages 730–739. IEEE, 2016.

2. Martin Hilbert and Priscila López. The world’s technological capacity to store,
communicate, and compute information. science, 332(6025):60–65, 2011.

http://petra3.desy.de/


14 Julian Kunkel

3. Nathanel Hübbe and Julian Kunkel. Reducing the HPC-Datastorage Footprint with
MAFISC – Multidimensional Adaptive Filtering Improved Scientific data Compres-
sion. Computer Science - Research and Development, pages 231–239, 05 2013.

4. Michael Kuhn, Konstantinos Chasapis, Manuel Dolz, and Thomas Ludwig. Com-
pression By Default - Reducing Total Cost of Ownership of Storage Systems. In
Julian Martin Kunkel, Thomas Ludwig, and Hans Werner Meuer, editors, Super-
computing, number 8488 in Lecture Notes in Computer Science, Berlin, Heidelberg,
06 2014. Springer International Publishing.

5. Julian Kunkel. Analyzing Data Properties using Statistical Sampling Techniques –
Illustrated on Scientific File Formats and Compression Features. In Michaela Taufer,
Bernd Mohr, and Julian Kunkel, editors, High Performance Computing: ISC High
Performance 2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC,
IXPUG, IWOPH, P3MA, VHPC, WOPSSS, number 9945 2016 in Lecture Notes
in Computer Science, pages 130–141. Springer, 06 2016.

6. Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE transactions
on visualization and computer graphics, 20(12):2674–2683, 2014.

7. Matt Mahoney. Large text compression benchmark. URL: http://

www.mattmahoney.net/text/text.html, 2009.
8. Senthil Shanmugasundaram and Robert Lourdusamy. A comparative study of

text compression algorithms. International Journal of Wisdom Based Computing,
1(3):68–76, 2011.

9. Wen Xia, Hong Jiang, Dan Feng, and Lei Tian. Combining deduplication and delta
compression to achieve low-overhead data reduction on backup datasets. In Data
Compression Conference (DCC), 2014, pages 203–212. IEEE, 2014.

http://www.mattmahoney.net/text/text.html
http://www.mattmahoney.net/text/text.html

	SFS: A Tool for Large Scale Analysis of Compression Characteristics
	Introduction
	Related Work
	Statistical File Scanner
	Scanning Methodology
	Architecture of SFS
	Limitations of the Scanning Process

	Convergence of the Sampling Strategy
	Evaluation
	Test Environment
	Study of the WR data pool
	Identifying Useful Algorithms

	Summary


