Scalable Parallelization of Stencils using MODA

Nabeeh Jum’ah! and Julian Kunkel?

! Universitit Hamburg-Jumah@informatik.uni-hamburg.de
2 University of Reading—j.m.kunkel@reading.ac.uk

Abstract. The natural and the design limitations of the evolution of
processors, e.g., frequency scaling and memory bandwidth bottlenecks,
push towards scaling applications on multiple-node configurations be-
sides to exploiting the power of each single node. This introduced new
challenges to porting applications to the new infrastructure, especially
with the heterogeneous environments. Domain decomposition and han-
dling the resulting necessary communication is not a trivial task. Par-
allelizing code automatically cannot be decided by tools in general as a
result of the semantics of the general-purpose languages.

To allow scientists to avoid such problems, we introduce the Memory-
Oblivious Data Access (MODA) technique, and use it to scale code to
configurations ranging from a single node to multiple nodes, supporting
different architectures, without requiring changes in the source code of
the application. We present a technique to automatically identify nec-
essary communication based on higher-level semantics. The extracted
information enables tools to generate code that handles the communi-
cation. A prototype is developed to implement the techniques and used
to evaluate the approach. The results show the effectiveness of using the
techniques to scale code on multi-core processors and on GPU based
machines. Comparing the ratios of the achieved GFLOPS to the number
of nodes in each run, and repeating that on different numbers of nodes
shows that the achieved scaling efficiency is around 100%. This was re-
peated with up to 100 nodes. An exception to this is the single-node
configuration using a GPU, in which no communication is needed, and
hence, no data movement between GPU and host memory is needed,
which yields higher GFLOPS.

Keywords: HPC; Scalability; Parallel Programming; Stencils

1 Introduction

In modern computing technology, the processing speed on a single processor
core reached its limit. Therefore, parallelism of multiple cores within a node
and inter-node communication via high-speed networks is required to satisfy
performance demanding applications. For example, developers of earth system
modeling software demand higher-resolution grid as they provide more accurate
results from a scientific perspective.

The task of rewriting software to scale on multiple nodes is challenging for
scientists. It requires distributing the data (domain decomposition [10]) and

The final publication is available at Springer through the DOI 10.1007/978-3-030-34356-9_13
1/13

2 Jum’ah & Kunkel

balancing of the computational load between the nodes and handling the com-
munication. Other considerations and particularly portability should be taken
into account, e.g. communicating data residing on device memory when running
kernels on GPUs differs from data existing on host memory.

Stencils include access to fields at spatially-neighboring points. This leads to
accessing memory multiple times to get field data to load stencil points. Nor-
mally, memory access with general-purpose languages indices defines explicitly
where the data resides in memory. Such characteristic stems from the design
of the general-purpose languages, which carries the semantics of access to local
memory.

An important aspect of the move from the local memory to the distributed
memories on multi-node machines is locating and accessing data. Generally, with
general-purpose languages and explicit memory indices, developers need to keep
in mind the domain decomposition and to keep track of the mapped partition
of the problem domain to the local memory, and use the indices to access the
right data elements. So, mapping the global position of a data element (with
respect to the global problem domain) to the right indices in the local memory
should be tracked by the developers. Furthermore, developers need to identify the
necessary communication between the nodes, and hence write code to prepare
the necessary data and handle the exchange to make the data that resides on a
remote memory accessible through the local memory.

To avoid the necessity of architecture-specific code inside applications, and to
ease the development of new applications, the parallelization should be handled
semi-automatically by tools and libraries. Unfortunately, the semantics of the
general-purpose languages do not provide compilers with the necessary informa-
tion to make such decisions.

The main contribution of this work is the introduction of the Memory-
Oblivious Data Access (MODA) technique to replace local-memory-bound ex-
plicit data access; it consists of a technique to extract the necessary semantics
from the source code to automatically generate code to handle parallelization
of stencil computations on multiple nodes, in addition to shared-memory paral-
lelization.

MODA allows using the same source code on different run configurations in-
cluding shared and distributed memory, and different architectures. It requires
application source code to be written with higher-level semantics. As a prototype
we utilize the GGDML [9] language extensions, which allow mixing general-
purpose code with additional higher-level semantics to describe stencil compu-
tations. GGDML extends the grammar of a programming language with higher
semantics that bypasses the architectural differences and provides performance
portability [7]. This allows our solution to support performance portability and
fit different architectures.

This article is structured as follows: a review of related work is done in
section [2| the technique and the methodology are described in section |3 an
evaluation of the technique is discussed in section [} and we conclude the text
with section [B

2/13

Scalable Parallelization of Stencils using MODA 3

2 Related Work

The natural limits of the single processors necessitate to seek for methods, strate-
gies, and tools to support performance demanding applications and simplifying
the parallelization.

Manual parallelization With this strategy, the developer adjusts the code to
integrate parallelization strategies explicitly in the code which means that ap-
plication logic is mixed with code fragments that control the parallelization. This
is an old strategy, for example, in the early times of concurrent computing, [4]
applied explicit domain decomposition to run large-scale scientific software ap-
plications on concurrent computers, both on distributed and shared memory
systems. Domain decomposition was decided by the developers within the code.
Compilers are then used to build the code for the target architecture as pro-
vided by the developers. This explicit decomposition was successful on different
machines, and allows for near-optimal performance.

In fact, in the 1980’s many publications were released concerning strategies
to apply domain decomposition to parallel computing for various application
domains. Domain decomposition of stencil computations represented an impor-
tant research direction in the evolution of parallel computing technologies. For
example, |1] discussed a solution that handles domain decomposition and the
necessary interactions between the resulting regions to parallelize elliptic prob-
lems. Also, |2] used a domain decomposition strategy to develop a Poisson solver
using parallel machines. These are examples among other many suggested solu-
tions at that time. A comparison of domain decomposition strategies was made
in [11].

Even in the recent years, many papers are published that parallelize a specific
problem manually solving different problems using the recent advances in the
computing infrastructure. For example, |14] proposes a communication model
to handle data exchange on reconfigurable clusters. Another example, [6] used a
domain decomposition strategy to strong scale a solver of the Lattice Quantum
Chromodynamics on the KNC Xeon Phi co-processor, which highly reduces the
time to solution.

Data-structure libraries Exascale applications will need to access data which
resides on another node. To support such applications, some efforts provide so-
lutions at the data-structure level. DASH [5] is an ongoing work (under the
Smart-DASH project) to provide data structures that account for node-level
parallelism.

Code generation Besides to the evolution of the strategies to apply domain
decomposition, another direction in research was taken to support paralleliza-
tion, and hence simplify the developers’ task regarding domain decomposition.
Instead of manual coding, tools generate code to solve a problem, including
domain decomposition and communication. This is possible because code gen-
erators generate code for a problem among a specific family of computations,

3/13

4 Jum’ah & Kunkel

e.g., elliptical PDE solvers. Code generators use a specification of a problem and
generate code to solve that particular problem. This technique is used in many
efforts including [3}[13] to generate code for stencil computations. Tools with
specific goals, e.g., YASK [15] use code generation to generate optimized code
for parallel computing. YASK allows to explore the performance of a stencil on
Xeon and Xeon Phi processors, where optimal parameters can be identified for
a specific problem (stencil). The ExaStencils [12] project also generates the nec-
essary code based on an abstract higher-level problem specification. ExaStencils
is an ongoing project to support multi-grid solutions of stencils counting for the
expected exascale computing infrastructures.

In our work, we suggest a technique in which higher semantics are ex-
tracted from the source code, and used to transform the code to enable domain
decomposition and data communication between nodes. Tools identify the neces-
sary communication based on user-defined extensions, which are integrated into
a general-purpose language. Those extensions provide Memory-Oblivious Data
Access which resolves targeting the actual data location in memory, whether
local or remote.

Using our approach, we simplify scaling code to support modern multi-node
configurations using the same source code that is used for a single node. In
comparison to previous efforts, scientists do not need to manually parallelize
their modeling code. Nor do they need to care about calling any libraries to
handle domain decomposition or communication or keeping track of such details.
Tools infer all needed details from the language extensions. Compared to code
generation techniques, developers can still define their indices (which serve and
fit the needs of their application) instead of using explicit memory and array
semantics or using a predefined set of problem-family-specific constructs, e.g.
expressions to solve PDEs assuming a rectangular grid.

3 Methodology

In our approach, the computations are written using a general-purpose lan-
guage (GPL) extended by language constructs that blend into the GPL. We use
GGDML (General Grid Definition and Manipulation Language [9]) language
extensions for this purpose. GGDML provides an adaptable set of language ex-
tensions to support application needs. The DSL syntax and behavior can be
adjusted through configuration files [7] that guide the high-level code transfor-
mation procedures. This is prepared based on the needs of the specific application
or domain.

With this approach, a big chunk of the code can be kept, except for some small
replacements: Loop control code is written with GGDML iterator. The body of
the loop is modified by replacing the indices with user-defined extensions and
removing the loop structures. The semantics of the GGDML language extensions
allow the tools to identify the necessary communication.

4/13

Scalable Parallelization of Stencils using MODA 5

Listing 1.1: Example GGDML access operator definitions

east_neighbor (): XD=$XD+1
north_neighbor (): YD=$YD+1
west_neighbor (): XD=$XD-1
south_neighbor (): YD=$YD-1

3.1 MODA and User-Defined Indices

As discussed, array notation and memory access semantics in general-purpose
languages define explicitly the location of data in local memory, which obli-
gates the developers to keep track of mapping data from global domain to dis-
tributed memories and handle communication to guarantee access to the right
data through local memory when needed. Here comes the role of MODA, where
we use GGDML language extensions to access data. With GGDML indices, the
source code does not include explicit memory locations that depend on machine
semantics. On the contrary, GGDML indices reflect spatial relationships. Thus,
developers do not need to know if the neighboring grid cell is in the local memory
or in a remote one.

In fact the GGDML indices serve other purposes. As they hide the real
location of the data in memory, they allow using different data layouts. Different
memory layouts could achieve different performance on different architectures
or problems. A study to show the impact was published in [§].

To cope with different application needs, e.g., collocated vs. staggered, regu-
lar vs. icosahedral grids, triangular vs. hexagonal vs. rectangular cells; GGDML
allows users to define access operators to specify indices. Index adaptability
to application needs allows to define halo patterns and identify the necessary
communication. An example definition of a GGDML index is illustrated in List-
ing The example shows definitions of access operators to refer to the four
neighboring cells around a cell in a regular rectangular grid; as mentioned, the
definition is provided by the user and can be adjusted to any problem.

3.2 Using GGDML Indices

To illustrate the flexibility in the definition of access operators, take as example a
simple collocated rectangular grid. If we want to write a simple Laplacian kernel
using GGDML, we can use the access operators shown in Listing inside a
configuration file that we use to process our application code. In the source code
we can write the following kernel (Listing . In this kernel, we could access
the four neighboring cells using the spatial relationships, which we define to fit
our application.

Assume in another application we need to use a staggered grid to compute the
divergence at the centers of the grid cells based on flux values which reside on the
edges between the grid cells. In this case, we can add a new set of access operators
to support this second application, e.g., east_edge, north_edge, west_edge, and
south_edge. Using those access operators, the kernel can be written as shown

5/13

6 Jum’ah & Kunkel

Listing 1.2: Example GGDML code using access operators

// Traverse the cells of the grid
foreach ¢ in grid{

f_Hnew[c] = f_H[c] * W1 +
(f-H[c.east_neighbor () | +
f_-H[c.north_neighbor ()] +
f H[c.west_neighbor () | +
f_H[c.south_neighbor ()]

Listing 1.3: Example GGDML code using access operators in a staggered grid

// Traverse the cells of the grid
foreach ¢ in grid{
// Use GGDML access operators east_edge & west_edge
// to refer to the U edges of the cell
float df = (f_F[c.east_edge ()] —
f_.F[c.west_edge ()]) / dx;

// Use GGDML access operators north_edge & south_edge

// to refer to the V edges of the cell

float dg = (f-G[c.north_edge ()] —
f_-G[c.south_edge ()]) / dy;

f_HT [c] = df + dg;

in Listing [[.3] The new access operators define new spatial relationships that
allowed access to the cell edges.

Looking at both applications, a user (or better scientific programmer) could
define the necessary access operators that serve the application, where spatial
relationships are used, while no information regarding where the data is located
in memory are mentioned. The source code in both applications doesn’t explicitly
state whether the data is in the local memory or stored remotely.

3.3 Communication Identification

The developers responsibility to track data location, to communicate data be-
tween nodes, and to use the right memory indices to access data locally is shifted
to the tools through the semantics of the GGDML extensions. Depending on the
domain decomposition method, an access operator leads to identify the needed
communication if any. For example, north_edge is sufficient to let a tool know
that the data of the edges should be communicated when the edges of a set of
cells reside on a different node when dividing the surface into sub-domains. To
do this, we suggest an algorithm (Algorithm [I]) to infer some information from
the AST and use this information to generate the necessary code to handle the
communication.

In this algorithm, we look for data access expressions and process all the
access operators used to access data. This processing includes checking if the ac-
cess operator corresponds to a halo pattern. Information is logged in a list about
the variable, e.g., whether we need to read some halo region from a different

6/13

Scalable Parallelization of Stencils using MODA 7

/* traverse the iterator AST x/
foreach AST_node in iterator_subtree do
/* if the node is an expression to access a field data */
if AST_node is a field_access_expression then
/* get field name, list of indices, and access type */
field_name < get_field_name(AST node);
access_type < get_access_type(AST node); /* e.g., read x/
index_node_list < get_index_node_list(AST _node);
/* iterate over the access indices */
foreach indezx_node in index_node_list do
/* use indices to identify necessary communication x/
if is-GGDML_indez(index_-node) then
/* build a list of access operators */

AQlist <+ fetch_access_operator_list(index_node);
/* check all access operators if they require halo

exchange */
foreach AO in AO_list do

if is_access_operator_a-probable_halo_exchange_reason(AQO)

then
add_entry_to_needed_halo_exchange_ list(AO, field name,
access_type);

end
end
end
end
end

end

/* check redundancies and dependencies x/
analyse_and_rebuild_needed_halo_exchange_list();

/* generate code to handle communication */

generate_code_halo_pattern_communication_code();
Algorithm 1: Necessary communication detection algorithm

node. This list is further processed to analyze dependencies and redundancies to
optimize communication. Finally, code is generated to handle the communica-
tion. The generated code includes the necessary data preparations and calls to
communication library routines, e.g. M PI _Isend or M PI Irecv.

To demonstrate the work of the algorithm and the techniques, lets take a
look at the example code shown in Listing For this code, we apply a domain
decomposition of the Y dimension, where a set of consecutive X-rows is stored
on a node and processed on it. Based on this domain decomposition and the re-
lationships between the cells and their edges, the expression f_G[c.north_edge()]
means an X-row of edges (the halo/south-most row) should be communicated
from the node that is responsible for the north neighborhood. Our implementa-
tion generated the MPI code in Listing[T.4] to handle the needed communication.

Some data access expressions imply the need to access halo data which resides
on the same node, which does not need MPI communication. In this case a
normal data copy can be done. For example, the access operator east_edge in

7/13

8 Jum’ah & Kunkel

Listing 1.4: Generated communication sections from example code in Listing|1.3

if (mpi-world_size > 1) {
comm-_tag++;
int pp = mpi-rank != 0 ? mpi-rank — 1 : mpi-world_size — 1;
int np = mpi-rank != mpi-world_size — 1 ? mpi-rank + 1 : 0;

MPI_Isend (f-G[0], GRIDX + 1, MPIFLOAT, pp, comm-_tag,
MPLCOMM_WORLD, &mpi-requests [0]);

MPI_Irecv (f-G [local_-Y_Eregion], GRIDX 4+ 1, MPIFLOAT,
np, comm-_tag, MPLCOMM.WORLD, &mpi-requests[1]);

MPI_Waitall (2, mpi-requests , MPI.STATUSES_IGNORE);

Listing 1.5: Generated data copy from example code in Listing|1.3

for (int j = 0; j < local_-Y_Eregion; j++) {
£-F [j][GRIDX] = £-F[j][0];

the expression f_F[c.east_edge()] and the mentioned domain decomposition case
means the cells at the rightmost column needs to access their right edges. In this
application we use periodic boundaries, in which the rightmost edge of a row is
itself the leftmost one. This means, copying those edges allows the rightmost cells
to access edges using the same computational kernel. Again our implemented tool
generates the following code (Listing to copy the data of those halo edges.

After the necessary data is ready in memory on the processing node to execute
the computation, the compute kernel can be run. To improve this in lengthy
communication cases, the communication code time can be overlapped with
the computation time, given that inner regions do not depend on the data that
should be communicated. In this case, the computation of the outer region (which
depends on halo data) should start after the communication is finished. The
computation kernel that is generated from the example code in Listing is
shown in Listing [T.6]

4 Evaluation

In this section, we show some results achieved using the discussed techniques.
Experiments were done on single nodes and multiple nodes, multi-core processors
and GPUs were involved in the experiments.

4.1 Test Application

The test application is a solver of the shallow water equations on a two-dimensional
regular grid with cyclic boundary Conditionsﬂ The application applies the finite

3 The code is available at
https://github.com/aimes-project/ShallowWaterEquations/|

8/13

https://github.com/aimes-project/ShallowWaterEquations/

Scalable Parallelization of Stencils using MODA 9

Listing 1.6: Generated computing code from example code in Listing|1.3

for (size_t blk_start = (0); blk_start < (GRIDX); blk_start += 20000) {
size_t blk_end = GRIDX;
if ((blk_end — blk_start) > 20000) blk_end = blk_start + 20000;
#pragma omp parallel for
for (size_-t YD_.index = (0); YD.index < local_-Y_Cregion; YD_index++) {
#pragma omp simd
for (size_t XD_index= blk_start; XD_.index < blk_end; XD_index++){

float df = (f_F[YD.index][XD.index + 1] —
f_F[YD.index][XD_.index]) / dx;
float dg = (f_-G[YD.index + 1][XD_index] —
f_.G[YD.index][XD.index]) / dy;
f_HT [YD_.index] [XD_index] = df + dg;

difference method with an explicit time stepping scheme. Eight kernels are in-
cluded in which flux, velocities, surface level are computed besides to tendencies
in each time step.

4.2 Test System

The multi-core processor experiments are run on dual socket Broadwell nodes on
the machine Mistral at the German Climate Computing Center (DKRZ). The
processors are Intel(R) Xeon(R) CPU E5-2695 v4 with 2.10GHz. We used the
Intel (18.0.2) C compiler and the IntelMPI (2018.1.163) library.

The GPU experiments are run on the nodes on the machine 'Piz Daint’ at the
Swiss National Supercomputing Center (CSCS). The GPUs are Tesla P100 with
16 GB memory and PCle interconnect to the host. We used the PGI (17.7.0) C
compiler and the MPICH (7.6.0) library.

4.3 Experiments

We used GGDML with the C language to write our code. Configuration files
were prepared to guide the code translation into C with OpenMP for multi-
core processors, and C with OpenACC for GPUs. Optimization procedures were
applied during the translation process, e.g., blocking, to exploit the features,
e.g., caching, of the processing units. Parallelization on the node resources, i.e.,
the cores of the multi-core processors and the threads and SMs on GPUs, was
applied using OpenMP and OpenACC.

Translating the source code for the Broadwell and running it on a single
node shows near optimal use of the processor. The application (and the kernels)
runs with around 80% of the processor’s memory bandwidth (measurement
with the 'stream_sp_mem_avx’ benchmark from the ’Likwid’ tools measured 67
GBytes/s). This code uses caches optimally, where minimal data movement be-
tween memory and processor is needed. Minimizing the movement of the data in
a memory-bound code means the code runs with about an optimal performance.

9/13

10 Jum’ah & Kunkel

Using the defined access operators to generate communication code, allows
us to run the same source code on multiple nodes. Using our implementation of
the technique, we generated the necessary MPI code to handle halo exchange.
Running the code on different numbers of nodes we could scale the code to more
resources. We use multiples of ten, up to hundred nodes. The results are shown

in Figure

3000 1

2000 1

GFLOPS

1000 1

0 25 50 75 100
Nodes

Fig. 1: Scaling on multiple Broadwell nodes

Translating the source code for the P100 GPU and running it on a single
node shows near optimal use of the GPU. The application (and the kernels)
runs with around 80% of the GPU’s memory bandwidth (measurement with
a CUDA STREAM benchmark yielded about 498 GB/s). This code uses caches
and warps optimally, where minimal data movement between the device memory
and the executing GPU threads is done. This means the code runs with about
an optimal performance.

Using the access operators again we generated the application code that in-
cludes the necessary communication code, which allowed to run the same source
code on multiple nodes with GPUs. We generated the necessary MPI code to
handle halo exchange, besides to the OpenACC code. The application scaled to
multiple nodes with GPUs. Again we use multiples of ten, up to hundred nodes.
The results are shown in Figure 2]

To distribute the work between the running resources, both on multi-core
processors and on GPUs, the problem domain is decomposed into local domains
that reside on each node. Contiguous lines of the grid are given to each local
domain. While the domain decomposition strategy maximizes load balance be-
tween nodes, other on-node considerations are taken into account. Data reuse,
and distribution over cores/threads were maximized with blocking and on-node
parallelization.

10/13

Scalable Parallelization of Stencils using MODA 11

9000 1

6000

GFLOPS

3000

0 25 50 75 100
Nodes

Fig. 2: Scaling on multiple nodes with P100 GPUs

5 Summary

In this paper, we introduced the MODA technique to allow access to data while
having no information about where the data is located or whether it is on the
local memory or on a remote one. We used the GGDML set of language exten-
sions to access data based on spatial relationships rather than memory location.
The GGDML extensions allowed to describe an application in a single (unified)
source code, this code could be translated to different target different archi-
tectures. We used a technique to extract information through the higher-level
semantics to identify the necessary communication to exchange data between
the nodes, or even copy data on the local memory. We demonstrated the use of
MODA and the GGDML language extensions to write the kernels in two kinds
of grids; collocated and staggered. That was possible as a result of the design of
GGDML, in which users define access operators. User-defined access operators
enable the adaptability of the GGDML extensions to support application-specific
needs. We described an algorithm to extract the necessary information from the
source code and generate the necessary communication code and hence scale the
code, which is not aware of sequential or parallel execution, to use resources on
multiple nodes.

We showed the generated inter-node communication code and on-node data
copy code which were generated from the example staggered grid kernel. We
also showed the results of experiments executed on a test application, which
was written with GGDML and C language. The results show that the discussed
techniques scale the same source code that can be used for a single node (or even
sequential code) to run on multiple nodes. Two architectures were included in
our experiments, multi-core processors, and GPUs.

We have a list of todos for future work. We have already implemented some
improvements to prepare data to optimize communication, e.g. packing data
residing on GPU’s device memory, but there are still some work to be done
to study and implement interfering communication with computing in more

11/13

12 Jum’ah & Kunkel

complex computations. Also, improvements towards more flexible and improved
preparation of communication code fragments will be published soon, including
the flexibility to switch communication libraries, e.g. use GASPI is an alternative
to MPL.

Acknowledgements

This work was supported in part by the German Research Foundation (DFG) through
the Priority Programme 1648 Software for Exascale Computing SPPEXA (GZ: LU
1353/11-1). We also thank the Swiss National Supercomputing Center (CSCS), who
provided access to their machines to run the experiments. We also thank Prof. John
Thuburn — University of Exeter, for his help to develop the code of the shallow water
equations.

References

1. Petter E Bjgrstad and Olof B Widlund. Iterative methods for the solution of elliptic
problems on regions partitioned into substructures. SIAM Journal on Numerical
Analysis, 23(6):1097-1120, 1986.

2. Tony F Chan and Diana C Resasco. A domain-decomposed fast poisson solver
on a rectangle. SIAM journal on scientific and statistical computing, 8(1):s14-s26,
1987.

3. Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus: A code generation
and autotuning framework for parallel iterative stencil computations on modern
microarchitectures. In 2011 IEEE International Parallel € Distributed Processing
Symposium, pages 676-687. IKEE, 2011.

4. Geoffrey C Fox. Domain decomposition in distributed and shared memory environ-
ments. In International Conference on Supercomputing, pages 1042—-1073. Springer,
1987.

5. Karl Firlinger, Colin Glass, Andreas Kniipfer, Jie Tao, Denis Hiinich, Kamran
Idrees, Matthias Maiterth, Yousri Mhedheb, and Huan Zhou. Dash: Data struc-
tures and algorithms with support for hierarchical locality. In FEuro-Par 2014
Workshops (Porto, Portugal), 2014.

6. Simon Heybrock, Bé&lint Joé, Dhiraj D Kalamkar, Mikhail Smelyanskiy,
Karthikeyan Vaidyanathan, Tilo Wettig, and Pradeep Dubey. Lattice qcd with
domain decomposition on intel® xeon phi™ co-processors. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 69-80. IEEE Press, 2014.

7. Nabeeh Jum’ah and Julian Kunkel. Performance portability of earth system models
with user-controlled ggdml code translation. In Rio Yokota, Michele Weiland,
John Shalf, and Sadaf Alam, editors, High Performance Computing, pages 693—
710, Cham, 2018. Springer International Publishing.

8. Nabeeh Jumah and Julian Kunkel. Automatic vectorization of stencil codes with
the ggdml language extensions. In Proceedings of the 5th Workshop on Program-
ming Models for SIMD/Vector Processing, WPMVP’19, pages 2:1-2:7, New York,
NY, USA, 2019. ACM.

12/13

10.

11.

12.

13.

14.

15.

Scalable Parallelization of Stencils using MODA 13

Nabeeh Jumah, Julian M Kunkel, Giinther Zangl, Hisashi Yashiro, Thomas Dubos,
and Thomas Meurdesoif. Ggdml: icosahedral models language extensions. Journal
of Computer Science Technology Updates, 4(1):1-10, 2017.

David E Keyes. Domain decomposition: a bridge between nature and parallel
computers. Technical report, INSTITUTE FOR COMPUTER APPLICATIONS
IN SCIENCE AND ENGINEERING HAMPTON VA, 1992.

David E Keyes and William D Gropp. A comparison of domain decomposition
techniques for elliptic partial differential equations and their parallel implementa-
tion. SIAM Journal on Scientific and Statistical Computing, 8(2):s166-s202, 1987.
Christian Lengauer, Sven Apel, Matthias Bolten, Armin Gré8linger, Frank Hannig,
Harald Kostler, Ulrich Riide, Jiirgen Teich, Alexander Grebhahn, Stefan Kronawit-
ter, et al. Exastencils: Advanced stencil-code engineering. In European Conference
on Parallel Processing, pages 553-564. Springer, 2014.

Naoya Maruyama, Tatsuo Nomura, Kento Sato, and Satoshi Matsuoka. Physis: an
implicitly parallel programming model for stencil computations on large-scale gpu-
accelerated supercomputers. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, page 11. ACM,
2011.

Xinyu Niu, Jose GF Coutinho, and Wayne Luk. A scalable design approach for
stencil computation on reconfigurable clusters. In 2013 23rd International Confer-
ence on Field programmable Logic and Applications, pages 1-4. IEEE, 2013.
Charles Yount, Josh Tobin, Alexander Breuer, and Alejandro Duran. Yask—yet
another stencil kernel: A framework for hpc stencil code-generation and tuning.
In Domain-Specific Languages and High-Level Frameworks for High Performance
Computing (WOLFHPC), 2016 Sixth International Workshop on, pages 30-39.
IEEE, 2016.

13/13

