
The Importance of Temporal Behavior when
Classifying Job IO Patterns Using Machine

Learning Techniques

Eugen Betke1 and Julian Kunkel2

1 DKRZ – betke@dkrz.de
2 University of Reading–j.m.kunkel@reading.ac.uk

Abstract. Every day, supercomputers execute 1000s of jobs with differ-
ent characteristics. Data centers monitor the behavior of jobs to support
the users and improve the infrastructure, for instance, by optimizing jobs
or by determining guidelines for the next procurement. The classification
of jobs into groups that express similar run-time behavior aids this anal-
ysis as it reduces the number of representative jobs to look into. It is
state of the practice to investigate job similarity by looking into job pro-
files that summarize the dynamics of job execution into one dimension
of statistics and neglect the temporal behavior.

In this work, we utilize machine learning techniques to cluster and classify
parallel jobs based on the similarity in their temporal IO behavior to
highlight the importance of temporal behavior when comparing jobs. Our
contribution is the qualitative and quantitative evaluation of different
IO characterizations and similarity measurements that work toward the
development of a suitable clustering algorithm.

We explore IO characteristics from monitoring data of one million paral-
lel jobs and cluster them into groups of similar jobs. Therefore, the time
series of various IO statistics is converted into features using different
similarity metrics that customize the classification. We discuss conven-
tional ML techniques that are applied to job profiles and contrast this
with the analysis of time series data where we apply the Levenshtein dis-
tance as a distance metrics. While the employed Levenshtein algorithms
aren’t yet optimal, the results suggest that temporal behavior is key to
identify related pattern.

Keywords: IO fingerprinting, performance analysis, monitoring

1 Introduction

Scientific large-scale applications of different domains have different needs for
IO and, thus, exhibit a variety of access patterns on storage. Even re-running
the same simulation may lead to different behavior. We can distinguish between
a temporal behavior, i.e., the operations performed over time such as long read
phases, bursty IO pattern, and concurrent metadata operations, and spatial



access pattern of individual processes of the application as they can be, e.g.,
sequential or random.

On different supercomputers, the same IO patterns may result in different
application runtimes depending on the nature of the access pattern. For example,
machines equipped with burst buffers [1,9] may significantly reduce application
runtimes by absorbing bursty IO traffic. IO congestion and file system perfor-
mance degradation can occur when several IO intensive jobs are running on the
same machine at the same time.

In our environment at DKRZ, the raw monitoring data of a job is captured
in form of a time series of nine metrics per node, each metrics sampled at five
seconds intervals. When comparing the time series of such metrics between two
jobs, the key question is how do we define the similarity between multiple time
series. From the user support side, we might be interested in grouping similar
suboptimal jobs and aim to provide one recipe to optimize all that exhibit such
a behavior. Similarly, we might be interested to optimize the pattern for a single
IO phase. We may be interested to ignore computation time and focus on IO
phases only. Regardless of the segment of the time series we look at, we naively
would consider an IO pattern to be identical if the time series for all metrics of
one job is identical to those of another job.

Utilizing time series data of a job for clustering if difficult as it firstly, depends
on runtime, the number of nodes, the gathered metrics, and possibly number of
file systems; secondly, the temporal IO behavior of parallel jobs depends on the
conditions of the cluster it is executed. For various reasons, even re-running the
same job may lead to variations in execution time and, thus, observed statistics.
Moreover, variants of workflows may lead to slight variations of behavior that
might be relevant for a data analyst.

In this article, we discuss and demonstrate the benefit of utilizing time series
data in contrast to profiles. First, we briefly discuss related work in Section 2.
Next, we describe our previous work and the monitoring system used in Section 3.
Our approach is described in Section 4. As jobs are of different length, a similarity
metrics must be able to handle time series of different length. Two classes of
approaches are investigated: 1) we generate job profiles and apply existing ML
techniques to cluster data; 2) we create a string from the time series and we apply
the Levenshtein distance which indicates the number of changes that need to be
made between two job strings. The experimental conditions for our evaluation
are described in Section 5. To evaluate these approach, we perform a qualitative
analysis in Section 6 discussing the statistics about the generated clusters and a
quantitative evaluation in Section 7 where we search jobs similar to a given job.
Finally the paper is concluded in Section 8.

2 Related work

There are many tracing and profiling tools that are able to record IO informa-
tion [6]. Most of them focus on individual jobs, and only a few of them apply
machine learning for data analysis, in particular across jobs. As the purpose of



applications is computation and, thus, IO is just a byproduct, applications often
spend less than 10% time with IO.

The Ellexus tools3 include the Mistral tool which purpose is to report on and
resolve IO performance issues when running complex Linux applications on high
performance compute clusters. Darshan [2,3] is an open source IO characteriza-
tion tool for post-mortem analysis of HPC applications’ IO behavior. Its primary
objective is to capture concise but useful information with minimal overhead.
This is accomplished by eschewing end-to-end tracing in favor of compact statis-
tics such as elapsed time, access sizes, access patterns, and file names for each
file opened by an application. Darshan can be used not just to investigate the IO
behavior of individual applications but also to capture a broad view of system
workloads for use by facility operators and IO researchers.

There are approaches that monitor record storage behavior and aim to iden-
tify inefficient applications in a cluster. TOKIO [7] integrates logs from various
sources to allow an analysis of data. It allows to find certain inefficient access
patterns in the data.

The LASSi tool [8] was developed for detecting victim and aggressor ap-
plications. To identify such applications, LASSi calculates metrics from Lustre
job-stats and information from the job scheduler. The correlation of these met-
rics can help to identify applications that cause the file system to slow down.
In the LASSi workflow this is a manual step, where a support team is involved
in the identification of applications during file system slow down. LASSi’s indi-
cates that the main target group are system maintainers. Understanding LASSi
reports may be challenging for ordinary HPC users, who do not have knowledge
about the underlying storage system.

In [5], the authors utilized probes to detect file system slow-down. A probing
tool measures file system response times by periodically sending metadata and
read/write requests. An increase of response times correlates to the overloading
of the file system. This approach allows the calculation of a slow-down factor
identification of the slow-down time period. This approach is able to detect a
file system slow-down, but cannot detect the jobs that cause the slow-down.

HiperJOBVIZ [?] is a visual analytic tool for visualizing the resource al-
locations of data centers for jobs, users, and usage statistics. It provides an
overview of the current resource usage and a detailed view of the resource usage
via multi-dimensional representation of health metrics. TimeRadar 4 is a part of
the tool, which summaries the resource usage via radar charts, creating a kind
of comprehensible profile for different user groups.

In contrast to existing approaches, the approach discussed in this paper fo-
cuses on the analysis of job data and investigates clustering strategy to group
similar jobs.

3 https://www.ellexus.com/products/
4 https://idatavisualizationlab.github.io/HPCC/TimeRadar

https://www.ellexus.com/products/
https://idatavisualizationlab.github.io/HPCC/TimeRadar


3 Preliminary Work

The German Climate Computing Center (DKRZ) maintains a monitoring sys-
tem that gathers various statistics from the Mistral HPC system. Mistral has
3,340 compute nodes, 24 login nodes, and two Lustre file systems (lustre01 and
lustre02) that provide a capacity of 52 Petabyte.

Raw monitoring data. Figure 1 illustrates a generic example for raw monitoring
data. In the example the data is captured on 2 nodes, on 2 file systems, for 2
metrics, and at 9 time points ti.

Fig. 1: A generic example of 4-dimensional raw monitoring data (Node × File
System × Metric × Time) and different levels of segmentation (colored boxes).

Segmentation. We split the time series of each IO metric into equal-sized time
intervals (segments) and computes a mean performance for each segment. This
stage preserves the performance units (e.g., Op/s, MiB/s) for each IO metric.
The generic example in Figure 1 creates segments out of three successive time
points just for illustration purposes. Actually, we convert raw monitoring data
to 10 minutes segments, which we found is a good trade-off to represent the
temporal behavior of the application while it reduces the size of the time series.
Depending on aggregation function, segments can be created of metrics, of file
systems, of nodes, or even over all dimensions.

Categorization. Next, to get rid of the units, and to allow calculations between
different IO metrics, we introduced a categorization pre-processing step that
takes into account the performance of the underlying HPC system and assigns
an unitless ordered category to each metric segment. We use a three category
system, which contains the LowIO=0, HighIO=1 and CriticalIO=4 categories.
The category split points are based on the observed file system usage and the



score values assigned to each category represent their weigth. We investigated
both concepts in our previous work [4] This node-level data can then be used
to compute job-statistics by aggregating across dimensions such as time, file
systems, and nodes.

In summary, this data representation has the following key advantages for
data analysis. The ordered categories make the calculations between different
metrics feasible, which is not possible with raw data. Furthermore, the domains
are equally scaled and compatible, because the values are between 0 and 4, and a
value has a meaning. Besides, the resulting data representation is much smaller
compared to the raw data. This allows us to apply compute-intensive algorithms
to large datasets. Finally, irrelevant data is hidden by the LowIO category and
doesn’t distract from significant parts of jobs.

In our previous work, we computed three high-level Job-IO-metrics per job
that aid users to understand job profiles: Job-IO-Balance indicates how IO load
is distributed between nodes during job runtime. Job-IO-Utilization shows
the average IO load during IO-phases but ignores computation phases. Job-
IO-Problem-Time is the fraction of job runtime that is IO-intensive; it is
approximated by the fractions of segments that are considered IO intensive.

We will use them in job profiles as well to capture some temporal behavior.

4 Methodology

The goal of this article is to research the impact of the temporal dimension when
applying clustering strategies on a large number of jobs. Therefore, we compare
job-profiles that neglect the temporal dimension and time series of different
length represented as strings.

Generally, machine learning algorithms expect a fixed number of features.
Thus, the time series that are retrieved on the node-level needs to be pre-
processed. The application of a “specific algorithm” can be understood as a
number of successive processing steps on data. Roughly speaking, there are three
basic steps that we apply: data pre-processing including coding, similarity com-
putation, and clustering. We call one of such a combination a clustering stack.
The pre-processing converts the dynamic-sized monitoring data which depends
on the number of captured IO metrics, allocated nodes, and application runtime
into a suitable representation for the clustering algorithm. Then the clustering
is applied. Finally, the clustering result needs to be assessed, i.e., how suitable
is this strategy for our IO statistics and use cases? In the following, we have
dedicated a section to each step discussing potential alternatives.

Data pre-processing The 4-dimensional data (Node × File System × Metric
× Time) from our monitoring system is too fine-grain for mass analysis. To be
able to analyse millions of jobs, we must reduce the dimensionality. Depending
on reduction techniques, the result of the data-preprocessing is either a dataset
of feature vectors for general-purpose algorithms, or a set of codings for custom
clustering algorithms.



We decided to distinguish how the different dimensions of a job are reduced
and aggregated (if at all); for example, we may summarize a metric over the node
dimension and then compute the mean across time to obtain a profile for each
metric and file system. Regardless of this decision, we first convert the time series
into segments of 10 minutes. Hence, for a job and for each of our nine client-
side recorded IO metrics, we obtain a coarse-grained time series. To simplify the
interpretation of results and the choice distance metrics, it is beneficial to have
the same unit for all features which is why we use our category classification
which creates a unitless order. For instance, when reduced by node, file system,
and across metrics, a point may represent the mean value for the job for each
10 minute runtime.

Coding Segmented data contains a numeric floating point value for each data,
which can be too much information for the analysis. Therefore, we introduce
two condensed data representations called binary and hexadecimal coding. Ad-
ditionally, we introduce zero-aggregation, that is an operation that aggregates
continuous zero segments to one zero segment.

Binary coding represents monitoring data as a sequence of numbers, where each
number stands for a specific file system usage depending on the activities. In
this coding approach each conceivable combination of activities has an unique
number. In our implementation, we use a 9-bit number to represent each segment
where each bit represents a metric. The approach maps the three categories to the
following two states: The LowIO category is mapped to the non-active (compute
intense) state (0), and HighIO and CriticalIO categories are mapped to the active
state (1). On one side, by doing this, we lose information about performance
intensity, but on other side, this simplification allows a more comprehensible
comparison of job activities.

Using this kind of coding we can compute a number for each segment, that
describes unambiguously the file system usage, e.g., a situation where intensive
usage of md read (Code=16) and read bytes (Code=32) occur at the same time
and no other significant loads are registered is coded by the value 48. Coding
is reversible, e.g., when having value 48, the computation of active metrics is
straightforward.

To reduce the 4-dimensional data, we reduce that structure to two dimensions
(segments metrics) by aggregating other dimensions by summing up the score
values. Additionally, sequences of zero segments can be reduced to just one zero
segment to neglect the length of an application’s IO phase. For presentation
purposes, in the resulting table we leave zero scores. An example encoded job
before and after the reduction of zero segments is shown here:

jobA (after coding): [1:5:0:0:0:0:0:0:96:96:96:96:96:96:96], ’length’:15
jobA (after reduction): [1:5:0:96:96:96:96:96:96:96], ’length’:15

Hexadecimal coding preserves monitoring data for each metric and each segment.
As the name suggests, the value of a segment is converted into a hexadecimal



number. The numbers are obtained in two steps. Firstly, the dimension reduction
aggregates the file system and the node dimensions and computes a mean value
for each metric and segment, which lies in interval [0,4]. Secondly, the mean
values are quantized into 16 levels – 0 = [0,0.25), 1 = [0.5,0.75), . . . , f = [3.75,
4]. The following example shows a five segment long hexadecimal coding:

jobB: ’length’: 6, ’coding’:
’metric_read’ : [0:2:2:2:9],
’metric_write’ : [0:0:0:0:0],
...,
’metric_md_other’: [0:0:0:f:f]

Similarity We use euclidean distance to determine the similarity between two
job profiles. For time series, we use Levenshtein distance that is the number of
operations (inserts/deletes/changes) required to convert one coding in another.

Clustering In the last step, similar jobs need to be grouped in clusters. To
handle millions of jobs, the algorithm must be performant. We developed two
strategies that meet the requirement, one based on widely used general-purpose
algorithms, and a custom algorithm.

ClusteringTree algorithm. As we do not know how many different classes of
jobs are in the dataset, a traditional k-means classification turned out to be not
productive in our experiments. Therefore, we explored the usage of agglomerative
clustering, however, with it’s complexity of ≥ O(N2), it wasn’t applicable to our
dataset. Thus, we simplified the application into this algorithm. This algorithm
involves three steps: (1) Agglomerative clustering of a small dataset and labeling
data, (2) training of a decision tree model, and (3) clustering with the decision
tree of the remaining jobs.

SimplifiedDensity algorithm. Clusters are formed around centroids. That are job
codings that form clusters by attracting similar jobs. All jobs in a cluster fulfill
only one condition, the similarity (SIM) to the centroid has to be larger than the
user defined value. The algorithm takes a non-assigned job and iterates through
existing clusters looking if the similarity to the cluster centroid is larger than the
user defined values. The job is assigned to the first cluster, where the condition
is fulfilled. If there is no such a cluster, the job forms a new cluster and becomes
a centroid of this cluster.

Clustering stacks There are various combinations of the different strategies
possible. For simplicity, we refer to one clustering stack just as algorithm. During
our research, we explored various combinations out of the possible combinations.
The paths are visualized Figure 2 and discussed further in the following section.



Fig. 2: Algorithms and their actual clustering stacks.

4.1 Algorithms

ML To apply existing clustering algorithms, first, a job-profile is created in the
pre-processing. The 4d time series can be transformed into the required fixed
size input format accepted by the general-purpose ML clustering algorithms. In
the preprocessing step, the MinMaxScaler scales the features to values between
0 and 1 using MinMax normalization. Therefore, the highest distance between
two points can be at most εmax = d1/d, where d is the dimension of the dataset.

We explored two job profiles: IO-metric and IO-duration. The IO-metric job
profile utilizes three features, Job-IO-Balance, Job-IO-Utilization, and Job-IO-
Problem-Time (as defined in [4]). After the data pre-processing, we obtain a set
of 3-dimensional data points with a domain between 0 and 1. The maximum
distance between any two jobs (εmax) is 1.44.

The IO-duration job profile contains the fraction of runtime, a job spent
doing the individual IO categories leading to 27 columns. The columns are
named according to the following scheme: metric category, e.g, bytes read 0 or
md file delete 4. The first part is the one of the nine metric names and the
second part is the category number (LowIO=0, HighIO=1 and CriticalIO=4).
These columns are used for machine learning as input features. There is a con-
straint for each metric (metric 0 + metric 1 + metric 4 = 1), that makes 9
features redundant, because they can be computed from the other features. So
we have to deal with 18 features; εmax is 1.17.

In experiments, we observed that the agglomerative clustering algorithm that
is used in this work can handle around 10,000 jobs in a reasonable amount of
time as the complexity is N2. With the following additional classification steps,
we are able to cluster 1,000,000 samples:

1. Clustering and labeling 10,000 jobs with agglomerative clustering algorithm.
2. Training of a decision tree model with data from the previous step.
3. Predict labels of 1,000,000 jobs with the trained decision tree model.



BIN ALL and BIN AGGZEROS For these algorithms, we encode the time
series of 9 metrics into one time series that is then assessed using Levensthein
distance. The similarity between two jobs is determined by the following formula:

similarity (jobA, jobB) = 1 −
levenshtein (codingA, codingB)

max (lengthA, lengthB)
(1)

It computes the number of operations (changes/deletes/inserts) divided by
the length of the longest sequence, and subtracted from the value one. According
to this equation, the similarity between the following two jobs is 73 percent:

jobA: [1:5:0:0:0:0:0:0:96:96:96:96:96:96:96], ’length’: 15
jobB: [0:0:0:0:0:0:0:0:0:96:96:96:96:96:98], ’length’: 15

As a variation of this approach, we investigated also the case where consecu-
tive zero-sequences are reduced to a single zero segment. This allows us to focus
on IO intensive parts of the job. The example below shows reduced codings from
the previous example. Note, that this operation has no effect on the job length
and similarity computation.

The similarity between the following two codings is 53 percent:

jobA: [1:5:0:96:96:96:96:96:96:96], ’length’: 15
jobB: [0:96:96:96:96:96:98], ’length’: 15

HEX LEV This similarity function works on the same principle as the BIN
algorithms, with the difference that instead of a single pre-reduced time series
per job, it computes the similarity between all 9 metrics of two different jobs
first and then compute the mean.

This adaption allows to apply Levenshtein-based similarity on hexadecimal
coding as follows:

similarity (jobA, jobB) = 1−
∑

m∈Metric levenshtein
(
codingA,m, codingB,m

)
N · LB

, with LB ≥ LA (2)

4.2 Assessment

Lastly, the quality of the obtained clusters must be assessed. Overall, we will
assess their suitability using quantitative metrics such as the number of gener-
ated clusters and their sizes and qualitatively by manually exploring clusters of
relevant jobs. We want to emphasize that our goal is to find similar jobs. Unfor-
tunately, it is not feasible to analyze all of them qualitatively with reasonable
effort and there are no tools that can assess the cluster quality automatically.
For the qualitative analysis, we start by looking into a job that is given to user
support, then similar jobs need to be found. In the same cluster, we expect the
sequences to be similar. If not, the clustering algorithm is not effective.



5 Experimental Setup

5.1 Data

This section describes the job data extracted from Mistral, originally we gathered
1 million jobs from a period of 203 days. Mostly jobs are allowed to run up to
8-hours, leading to time series with up to 48 segments. The general procedure
for monitoring data shorter than 10 minutes, that occur inevitable in short jobs
and in the last job segment, if job runtime is not divisible by 10 minutes is the
following: We compute the mean performance, assume the run time of 10 minutes
with this mean performance, and create one 10 minutes segment out of it. From
the perspective of this work, analysis of non-IO-intensive jobs (jobs with zero in
all segments) is irrelevant, these jobs can be grouped into one class easily. For
that reason, we detect zero-jobs early and remove them from the dataset; these
are about 40% of jobs.

The number of zero-jobs is different for hexadecimal and absolute mode cod-
ings. For BIN algorithms we create 583,000 codings and for HEX algorithms
444,000 codings. The reason is the quantization to HEX coding, which firstly
computes mean performance values for all segments, and then quantizes them
to 16 levels. Hereby, some segments can be quantized to zeros, if the mean value
becomes sufficiently low. Therefore, it may happen that some jobs fall into the
zero-job category if all segments are quantized to zeros. It can not happen in
BIN coding, because it preserves all the active segments, so that no job may
change the category. Interestingly, it affects around 14% of jobs.

5.2 Test environment

For the performance tests, we allocate a compute node on Mistral supercom-
puter. It is equipped with 2x Intel® Xeon® CPU E5 2680 v3 @ 2.50GHz, 64GB
DDR4 RAM. For clustering of job profiles, we use the agglomerative clustering
algorithm, decision trees, and the MinMaxScaler from the sklearn 0.22.1 library
and python 3.8.0. For clustering of binary and hexadecimal codings we a clus-
tering algorithm implemented in Rust and run it on a single core.

5.3 Algorithm parameters

ML. We explored our discussed job profiles: IO-metric and IO-duration. For
both datasets we explore ε ∈ [0.03, 0.06, 0.09, 0.1, 0.2, 0.3].

BIN/HEX. We conduct experiments with BIN ALL, BIN AGGZEROS, and
HEX LEV algorithms, varying the SIM ∈ [0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99] pa-
rameter and capturing clustering progress each time after clustering 10,000 jobs.



Fig. 3: Clustering progress.

6 Evaluation

ML The jobs within clusters have indeed a similar job profile, the time series
and, therefore, the binary coding differs significantly. For example, a cluster
can contain sequences with different IO behavior like in Table 1. Obviously, the
approach don’t work stable enough. We omit further details.

BIN/HEX In the introduced algorithms, the user-defined similarity (SIM) de-
fines the closeness a job must fulfill to the cluster centroid to be assigned to the
cluster. It is expected that low SIM values produce a small number of large but
noisy clusters and a high SIM value produces a large amount of small but clean
clusters. Although an optimal SIM value is depending on use case and dataset,
a parameter exploration may provide important hints to find a good value and
achieve optimal cluster qualities.

Figure 3 shows the number of clusters created when clustering an increasing
total number of jobs for different SIM values; each point represents the number
for an analyzed number of jobs in increments of 10,000 jobs. For all algorithms,
we can see that with an increase in SIM value, the number of clusters created
increases, and the number of total clusters created slows down the more jobs
have been processed as jobs are allocated to existing clusters. For a SIM of 99%,
BIN and HEX LEV can barely group jobs together.

To understand the aggregation behavior better, alternative visualizations are
investigated. In Figure 4, the number of clusters created for a given similarity

Job-IO-Utilization Job-IO-Problem-Time Job-IO-Balance Binary coding

4 1 0.44 118
4 1 0.45 368:368:368:368:368:368:374:368:368:368
4 1 0.46 496:496

Table 1: IO-metrics job profiles



Fig. 4: Similarity value exploration.

value is plotted. The red line approximates the overall number of clusters, the
green line shows how many contain at least two jobs and the blue line shows how
many of them contain at least 10 jobs. On the red line we can observe increasing
number of cluster with increasing SIM value, but we can also see on the green
line that for the BIN algorithms the number of cluster with two jobs decreases
after SIM ≥ 0.7. The maximum number of clusters is equivalent to the number
of jobs; it is visualized by the gray line. Coding with 100% similarity are of the
same job phenotype, i.e., they have exactly the same length and IO behavior.

This kind of investigation could help a user to find the right SIM for a
particular use case. A user can read off the line generalization capabilities of the
algorithm with the particular SIM value. The less clusters are created, the more
job phenotype they contain in average. The green line shows the point where the
algorithms begin to create job clusters with 1 job only. In some use case, this
might be an unwanted behavior.

7 Use Case: Investigating an IO-Intensive Job

The demonstration in this section shows how this approach can be used to
identify a cluster of IO-intensive jobs similar to an existing job.

Based on the parameter investigation, we choose the sim value by the fol-
lowing criteria. The BIN algorithms work best for SIM ≥ 0.7, and the HEX
algorithm requires a higher SIM value, hence we chose 0.9. A further increase of
the SIM value doesn’t make significant improvements in our experiments.

Firstly, we determined an IO intensive job that we use to identify similar jobs.
The IO intensive metric of the selected job is visualized in Figure 5. Other metrics
contain only zero segments or negligible IO. We can see that this job reads data
over the whole runtime. At beginning, only a subset of the nodes is reading
most of the data, later more nodes participate in the reading. The amount of



Fig. 5: IO intensive metric of one high IO intensity job running on 46 nodes.
Other metrics have negligible IO and are omitted. Score is the sum of all nodes
stacked by the node. A color represents the contribution of one of the nodes.

SIM Cluster size Number of job types

BIN ALL 0.7 27 17
BIN AGGZEROS 0.7 8 8
HEX LEV 0.9 209 189

Table 2: Cluster statistics.

Binary coding Type

192:192:192:192:192:192:196:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 job
192:192:192:192:192:192:192:192:192:192:192:454:230:192:192:192:192:192:192:192:192:192:192:192 centroid

(a) BIN ALL

Binary coding Type

192:192:192:192:192:192:196:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 job
511:238:192:510:192:224:228:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 centroid

(b) BIN AGGZEROS

Hexadecimal coding (partially)
read calls Type

3:3:8:8:8:5:6:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 job
8:8:8:8:8:2:6:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 centroid

(c) HEX LEV

Table 3: Job and the cluster centroid. Other jobs in the clusters are similar.

transmitted data is not large, but the amount of read calls is exceptionally high
and may potentially degrade the file system performance.

The SIM value selection strategy can vary from use case to use case. As cri-
teria we choose a SIM value that creates a moderate number of clusters (around
50% of job phenotypes) and keeps its generalization capabilities (the number of
clusters with more than 1 job is considerable). For the BIN algorithms we chose
a SIM of 0.7, and the HEX algorithm SIM of 0.9.

In the following, we investigate the cluster that contains this job for the
different algorithms. The number of jobs found in the cluster are listed in Table 2.
It shows that all algorithms find relatively small clusters. In Table 3, we can see
that the jobs are relatively close to the cluster centroid. All other jobs in the
clusters appear to be subjectively similar (not shown in the table). Thus, we
conclude the approach generally works.



8 Summary

In this article, we applied clustering strategies to job-profile and time series of IO
metrics. We conducted a short quantitative analysis to understand generalization
capabilities of the algorithms and to select the parameters and conducted a
qualitative analysis, i.e., manual inspection of the data to assess the quality of
the approach.

After a series of experiments with general purpose algorithms, the outcome
didn’t meet our expectations. The investigation of resulting clusters shows that
they are noisy. One problem might be the devised approach to use a clustering
and a classification algorithm. It is likely that the reason is that the temporal
behavior is compressed too much into the job-profile neglecting the important
information.

On binary coding, the Levenshtein-based algorithms produce better clusters,
especially with zero aggregation enabled. But the results are not sufficient for
short jobs. Codings like [0:6:0:0] and [0:388:174:0] have the same Levenshtein
distance to the centroid [0:388:0:0] but have different IO behavior.

Using the hexadecimal coding instead of binary coding leads to qualitative
better results with the price that a higher similarity must be chosen. Presumably
one reason is that hexadecimal coding sequences are nine times longer, which
provides better conditions for the Levenshtein similarity.

Despite the suboptimal results of the algorithms when inspecting clusters, the
final experiment actually shows that all the developed algorithms can actually
be applied to identify jobs similar to a given job. The definition of similarity
differs between these algorithms and may make them applicable to specific use
cases. More research is needed to understand the needs of users and data center
staff, and to define the appropriate similarity levels. We believe that the temporal
pattern plays a key role in the definition of similarity as our comparison shows. In
the future, we intend to refine the algorithms to account for different definitions
of similarity.

References

1. Betke, E., Kunkel, J.: Benefit of DDN’s IME-FUSE for I/O Intensive HPC Appli-
cations. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) High Performance
Computing. pp. 131–144. Springer International Publishing, Cham (2018)

2. Carns, P.: Darshan. In: High performance parallel I/O. pp. 309–315. Computational
Science Series, Chapman & Hall/CRC (2015)

3. Carns, P., Harms, K., Allcock, W., Bacon, C., Lang, S., Latham, R., Ross, R.: Un-
derstanding and improving computational science storage access through continuous
characterization. ACM Transactions on Storage (TOS) 7(3), 8 (2011)

4. Eugen Betke, J.K.: Semi-automatic Assessment of I/O Behavior by Inspecting the
Individual Client-Node Timelines — An Explorative Study on 106 Jobs. In: 2014
43rd International Conference on Parallel Processing Workshops. ISC Events (2020)



5. Kunkel, J., Betke, E.: Tracking User-Perceived I/O Slowdown via Probing. In: High
Performance Computing: ISC High Performance 2019 International Workshops,
Frankfurt/Main, Germany, June 20, 2019, Revised Selected Papers. Lecture Notes
in Computer Science, Springer (07 2019)

6. Kunkel, J., Betke, E., Bryson, M., Carns, P., Francis, R., Frings, W., Laifer,
R., Mendez, S.: Tools for Analyzing Parallel I/O. In: Yokota, R., Weiland, M.,
Shalf, J., Alam, S. (eds.) High Performance Computing: ISC High Performance
2018 International Workshops, Frankfurt/Main, Germany, June 28, 2018, Revised
Selected Papers. pp. 49–70. No. 11203 in Lecture Notes in Computer Science,
ISC Team, Springer (01 2019). https://doi.org/https://doi.org/10.1007/
978-3-030-02465-9_4

7. Lockwood, G.K., Wright, N.J., Snyder, S., Carns, P., Brown, G., Harms, K.: TOKIO
on ClusterStor: Connecting standard tools to enable holistic I/O performance anal-
ysis. Tech. rep., Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United
States) (2018)

8. Sivalingam, K., Richardson, H., Tate, A., Lafferty, M.: LASSi: Metric based I/O
analytics for HPC. CoRR abs/1906.03884 (2019), http://arxiv.org/abs/
1906.03884

9. Wang, T., Oral, S., Wang, Y., Settlemyer, B., Atchley, S., Yu, W.: Burstmem:
A high-performance burst buffer system for scientific applications. In: 2014 IEEE
International Conference on Big Data (Big Data). pp. 71–79 (2014)

https://doi.org/10.1007/978-3-030-02465-9_4
https://doi.org/10.1007/978-3-030-02465-9_4
http://arxiv.org/abs/1906.03884
http://arxiv.org/abs/1906.03884

	The Importance of Temporal Behavior when Classifying Job IO Patterns Using Machine Learning Techniques

