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Vorwort

Der vorliegende Band ist der elfte Band der Reihe ,,Forschung und wissen-
schaftliches Rechnen®. Er enthilt sieben der neun fiir den Heinz-Billing-
Preis des Jahres 2003 eingereichten Beitrdge. In diesem Jahr ging der Preis
erstmalig an eine Forschergruppe auflerhalb der Max-Planck-Gesellschaft,
und zwar an Roland Chrobok, Sigurdur F. Hafstein und Andreas Pottmeier
vom Fachbereich Physik der Universitidt Duisburg-Essen. Sie wurden aus-
gezeichnet fiir ihre Arbeit ,,OLSIM: A New Generation of Traffic
Information Systems®. OLSIM errechnet aus Verkehrsdaten verschiedenster
Quellen den aktuellen Verkehrszustand des Autobahnnetzes von Nordrhein-
Westfalen und simuliert die zukiinftige Verkehrssituation. Uber die Inter-
netseite www.autobahn.nrw.de kann sich jeder iiber den aktuellen Verkehrs-
zustand und iiber Prognosen fiir die néchsten 30 und 60 Minuten informie-
ren.

Weitere Auszeichnungen erhielten eine Arbeit zur Berechnung von
Feynman Diagrammen sowie ein Programmpaket zur Durchfiihrung von
MD/MC Simulationen an Soft Matter. Auch die iibrigen eingereichten und
hier veroffentlichten Beitridge decken ein breites Spektrum ab, angefangen
von Problemen der empirischen Sozialforschung iiber Visualisierung von 3-
dimensionalen Datensidtzen in der Tomografie und Generierung und
Visualisierung von komplexen NMR Pulssequenzen bis hin zur Berechung
von komplexen Transportphdnomenen.

Viele der eingereichten Arbeiten benutzen im Internet frei verfiigbare
und standardisierte Module. Dariiber hinaus hat sich die Art und Weise
gedndert, wie die Autoren iiber die Nutzung und Weiterverbreitung der ein-
gereichten Programme denken. Wihrend es in der Vergangenheit in der
Regel darum ging, mit Hilfe der Datenverarbeitung Losungen fiir ein spe-



zielles im Rahmen der eigenen Forschungsarbeit aufgetretenes Problem zu
finden, gehen inzwischen immer mehr der Wissenschaftler, die ihre Arbei-
ten fiir den Heinz-Billing-Preis einreichen, dazu iiber, ihre Ansitze der
wissenschaftlichen Community iiber das Internet zur Verfiigung zu stellen.
Das findet seinen Ausdruck in verschiedenen Beitrdgen, die hier vorgestellt
werden.

Ein herzlicher Gliickwunsch geht an dieser Stelle an den Stifter des
Preises, Herrn Prof. H. Billing, der im Februar dieses Jahres 90 Jahre alt
geworden ist. Wir moéchten uns im Namen der Heinz-Billing-Vereinigung
und im Namen aller Preistriger der letzten Jahre sehr fiir sein grofies
Interesse am wissenschaftlichen Rechnen in seiner ganzen Vielfalt sowie
seine fortwihrende Unterstiitzung bedanken.

Bedanken wollen wir uns auch bei Herrn Giinter Koch, GWDG, fiir die
Umsetzung der eingesandten Manuskripte in eine fiir das Offsetdruckver-
fahren kompatiblen Druckvorlage.

Die Vergabe des Preises wire ohne Sponsoren nicht moglich. Wir
danken der Firma IBM Deutschland, welche fiir 2003 als Hauptsponsor auf-
getreten ist.

Die hier abgedruckten Arbeiten sind ebenfalls im Internet unter der
Adresse

www. billingpreis.mpg.de
zu finden.

Kurt Kremer, Volker Macho



Der Heinz-Billing-Preis 2003






Ausschreibung des Heinz-Billing-Preises 2003 zur
Forderung des wissenschaftlichen Rechnens

Im Jahre 1993 wurde zum ersten Mal der Heinz-Billing-Preis zur Forderung
des wissenschaftlichen Rechnens vergeben. Mit dem Preis sollen die Leis-
tungen derjenigen anerkannt werden, die in zeitintensiver und kreativer
Arbeit die notwendige Hard- und Software entwickeln, die heute fiir neue
VorstoBe in der Wissenschaft unverzichtbar sind.

Der Preis ist benannt nach Professor Heinz Billing, emeritiertes wissen-
schaftliches Mitglied des Max-Planck-Institutes fiir Astrophysik und lang-
jahriger Vorsitzender des Beratenden Ausschusses fiir Rechenanlagen in der
Max-Planck-Gesellschaft. Professor Billing stand mit der Erfindung des
Trommelspeichers und dem Bau der Rechner G1, G2, G3 als Pionier der
elektronischen Datenverarbeitung am Beginn des wissenschaftlichen Rech-
nens.

Der Heinz-Billing-Preis zur Férderung des wissenschaftlichen Rechnens
steht unter dem Leitmotiv

,, EDV als Werkzeug der Wissenschaft.

Es konnen Arbeiten eingereicht werden, die beispielhaft dafiir sind, wie
die EDV als methodisches Werkzeug Forschungsgebiete unterstiitzt oder
einen neuen Forschungsansatz ermoglicht hat.

Der folgende Stichwortkatalog mag den moglichen Themenbereich bei-
spielhaft erldutern:



— Implementation von Algorithmen und Softwarebibliotheken
—  Modellbildung und Computersimulation

—  Gestaltung des Benutzerinterfaces

— EDV gestiitzte MeB3verfahren

— Datenanalyse und Auswertungsverfahren

—  Visualisierung von Daten und Prozessen

Die eingereichten Arbeiten werden referiert und in der Buchreihe "For-
schung und wissenschaftliches Rechnen" veréffentlicht.

Die Jury wihlt einen Beitrag fiir den mit € 3000,- dotierten Heinz-
Billing-Preis 2003 zur Forderung des wissenschaftlichen Rechnens aus. Die
Beitridge, in deutscher oder englischer Sprache abgefasst, miissen keine
Originalarbeiten sein und sollten moglichst nicht mehr als fiinfzehn Seiten
umfassen.

Da zur Bewertung eines Beitrages im Sinne des Heinz-Billing-Preises
neben der technischen EDV-Losung insbesondere der Nutzen fiir das jewei-
lige Forschungsgebiet herangezogen wird, sollte einer bereits publizierten
Arbeit eine kurze Ausfithrung zu diesem Aspekt beigefiigt werden.

Der Heinz-Billing-Preis wird jdhrlich vergeben. Die Preisverleihung
findet anlédsslich des 20. DV-Treffens der Max-Planck-Institute am 20.
November 2003 in Gottingen statt.

Beitridge fiir den Heinz-Billing-Preis 2002 sind bis zum 15. Juli 2003
einzureichen.
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Simulation turbulenter Konvektion in Supernova-Explosionen in
massereichen Sternen
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Prof. Dr. Stefan Miller
Max-Planck-Institut fir Mathematik in den Naturwissenschaften, Leipzig

Prof. Dr. Jirgen Renn
Max-Planck-Institut fir Wissenschaftsgeschichte, Berlin

Prof. Dr. H. Wolfgang Spiess
Max-Planck-Institut fir Polymerforschung, Mainz



Roland Chrobok, Sigurdur F. Hafstein und Andreas Pottmeier,
Universitdt Duisburg-Essen,

erhalten den

Heinz-Billing-Preis 2003
zur Forderung

des wissenschaftlichen Rechnens

als Anerkennung fiir ihr Projekt

OLSIM: A New Generation of Traffic Information Systems



Laudatio

Der Heinz-Billing-Preis 2003 wird fiir das Programmpaket OLSIM: A New
Generation of Traffic Information Systems verliehen. Durch die Online
Vernetzung von aktuellen Verkehrsdaten aus einem fldchendeckenden Netz
von Messpunkten mit modernen Verfahren der Computersimulation von
Verkehrsfliissen lassen sich mit bisher nicht gekannter Zuverldssigkeit
gegenwirtige Verkehrszustinde analysieren und zukiinftige vorhersagen.
Das Verkehrsinformationssystem OLSIM ist iiber Internet offentlich
zuginglich und gibt jedem Benutzer die Moglichkeit (fiir das Autobahnnetz
von Nordrhein-Westfalen) diese Informationen zu nutzen.

Bei den Prognosen werden neben den aktuellen Verkehrsdaten
zeitbezogene  typische ,Fingerabdriicke der einzelnen Strecken
beriicksichtigt. Das Programmpaket stellt damit einen wichtigen Schritt fiir
eine optimale Information des einzelnen Verkehrsteilnehmers sowie ein
wesentlich verbessertes Verkehrsleitsystem dar.

Verleihung des Heinz-Billing-Preises 2003 durch Prof. Kurt Kremer (mitte) an
Roland Chrobock (links) und Sigurdur F. Hafstein (rechts)
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OLSIM: A New Generation of Traffic Information
Systems

Roland Chrobok, Sigurdur F. Hafstein, Andreas Pottmeier

University Duisburg-Essen

Summary

Detailed and reliable information about the current traffic state is hardly obtainable by the road
user. Therefore, we propose a web based visualization of the current and future traffic load of
the autobahn network of North Rhine-Westphalia, Germany. This novel traffic information
system called OLSIM is based on an efficient and highly realistic traffic flow model, which is
fed by traffic data of 4,000 detecting devices across the road network every minute, and a
graphical user interface which can be accessed at www.autobahn.nrw.de.

1. Introduction

Since the construction of the first autobahn in Germany in the early 30th
between Bonn and Cologne, the vehicular traffic has risen in a dramatic
manner, especially in North Rhine-Westphalia. Whereas at first the auto-
bahns could handle the traffic demand easily, nowadays, particularly in
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densely populated regions, the existing autobahn network has reached its
capacity limit. The daily occurring traffic jams cause significant economic
damage. Moreover, in these areas, it is usually hardly possible and socially
untenable to enlarge the existing network. This is in particular true for the
German state of North Rhine-Westphalia. The network is not able to cope
with the demand in the daily rush hours and the drivers have to deal with
the traffic jams in the Rhine-Ruhr region (Dortmund, Duisburg, Essen,
Krefeld, Diisseldorf, etc.) and around Cologne (Leverkusen, Neuss, etc.).
The prognosis for the future paints an even worse picture as the demand
will increase further. New information systems and traffic management
concepts are thus truly needed.

Therefore, we established the advanced traffic information system
OLSIM which gives the internet user the opportunity to get information
about the current traffic state, a 30, and a 60 minute prognosis of the auto-
bahn network of North Rhine-Westphalia. Our approach to generate the
traffic state in the whole autobahn network is to use locally measured traffic
data, mainly provided by about 4,000 loop detectors as the input into an
advanced cellular automaton traffic simulator. These measured data, which
are delivered minute by minute, include especially the number of vehicles
and trucks passed, the average speed of the passenger cars and trucks, and
the occupancy, i.e., the sum of the times a vehicle covers the loop detector.
The simulator does not only deliver information about the traffic states in
regions not covered by measurement, but also gives reasonable estimates
for other valuable quantities like travel times for routes, a quantity that is
not directly accessible from the measurements of the detectors. As a further
improvement we combine the current traffic data and heuristics of aggre-
gated and classified traffic data to forecast the future traffic state. In the first
step we gave a short-term forecast for 30 minutes, which was extended in
the next step by a 60 minute prognosis. This information is completed by
the temporal and spatial road work and actual road closures. All these valu-
able traffic information is integrated in a Java applet that can be accessed by
every internet user at www.autobahn.nrw.de.

2. General Concept of the Traffic Information System
OLSIM

The intention in developing the traffic information system OLSIM is to
offer the opportunity to inform the road user fast and efficient about the
current and the predictive traffic state. Therefore, the information men-
tioned above has to be collected and prepared in a manner that is useful for
the user. The general setup of the traffic information system OLSIM is
depicted in Fig. 1.
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Fig. 1: The architecture of the traffic information system OLSIM.

First of all the different kinds of data have to be collected. Especially, the
traffic data is stored in a database. These are sent from 4,000 loop detectors
to the central OLSIM server every minute. The same holds for the data of
the control states of about 1,800 variable message signs (VMS) that are
located across the network. Furthermore, the data of road works are sent
from the traffic centrals to OLSIM. The messages of short term construction
areas are sent daily, those of permanent construction areas every two weeks.
The data include the location and the duration of the construction area and
an estimate whether the construction area will cause congestion or not.

Another data source are the so called RDS/TMC-messages. These mes-
sages are information provided by the traffic warning service and include all
kind of warnings concerning the current traffic like traffic jams, accidents,
road closures, and reroutings. These data are sent to the OLSIM server
immediately when they are generated.

To generate a valid picture of the traffic state many kinds of data fusion
techniques are needed. First, the actual traffic data are integrated into the
microscopic traffic simulator. Using it, every vehicle that is measured at any
time at one of the 4,000 loop detectors is directly fed into the simulation and
virtually moves on. In this way the point information of the loop detectors is
merged into a network wide traffic state. Such simulations are running for
the current traffic state, for the 30 minutes, and for the 60 minutes forecast.
In contrast to the online simulation, the forecasts are based on a combina-
tion of the actual traffic data and heuristics that are frequently generated and
stored in a second database.
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These heuristic traffic patterns are aggregated data which are classified in
different days (work days, holidays, etc.) and secondary data like road con-
structions, variable message signs, and special events.

The second level of data fusion is done in the java applet at the website
www.autobahn.nrw.de. Traffic state, construction areas, and road closures
are integrated in one graphical user interface. Here each section is colored
according to its calculated traffic state. Moreover, the construction areas and
the road closures are marked in the map at their location. Their temporal
parameters are shown in the status bar. The user can easily choose between
the current traffic situation, the 30, and the 60 minute prognosis.

The microscopic traffic simulation, on which the core of the information
system is based, is focused on in the next sections. So, in the following the
traffic simulator, the topology, and some special problems which arise when
such a complex network is mapped in the computer are explained in detail.

3. Simulation Model

The kernel of the online simulation is an advanced and highly realistic traf-
fic simulation model. Because the data is fed into the simulator and proc-
essed by it every minute it has to be at least real-time. Due to their design
cellular automata models are very efficient in large-scale network simula-
tions (5, 11, 20, 22, 24). The first cellular automaton model for traffic flow
that was able to reproduce some characteristics of real traffic like jam for-
mation was suggested by Nagel and Schreckenberg (18) in 1992. Their
model has been continuously refined in the last 10 years. The model we
implemented in our simulator uses smaller cells in comparison with the
original Nagel-Schreckenberg model, a slow-to-start rule, anticipation, and
brake lights. With these extensions the cellular automaton traffic model is
able to reproduce all empirically observed traffic states. Further, we use two
classes of different vehicles, passenger cars and trucks, where the trucks
have a lower maximum velocity and different lane changing rules.

Smaller cells allow for a more realistic acceleration and more speed bins.
Currently an elementary cell size of 1.5 m is used, in contrast to the 7.5 m in
the original Nagel-Schreckenberg model. A vehicle occupies 2-5 conse-
quent cells. This corresponds to speed bins of 5.4 km/h and an acceleration
of 1.5 m/s? (0-100 km/h in 19 s), which is of the same order as the “com-
fortable” acceleration of about 1 m/s?2. By using velocity dependent ran-
domization (1), realized through the introduction of ‘slow-to-start rules’,
meta stable traffic flows can be reproduced in the simulation, a phenomenon
observed in empirical studies of real traffic data (7, 12, 25). The inclusion of
anticipation and brake lights (2, 15) in the modeling leads to a more realistic
driving, i.e., the cars no longer determine their velocity solely in depend-
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ency of the distance to the next car in front, but also take regard to its speed
and whether it is reducing its speed or not.

In the Nagel-Schreckenberg model there is only one global parameter,
the probability constant (or dawdling parameter) p, and every vehicle, say
vehicle n, is completely determined by two parameters: its position x,(z) and
its velocity v (¢) € {0, I, ... v, } at time . When the vehicle n decides in the
time-step ¢  #+/ how fast it should drive, it does this by considering the
distance d, (1), i.e., the number of empty cells, to the next vehicle m in
front. The modifications mentioned above of the Nagel-Schreckenberg
model imply that we have to add some new parameters to the model. When
the simulation algorithm decides whether a vehicle n should brake or not it
does not only consider the distance to the next vehicle m in front, but esti-
mates how far the vehicle m will move during this time-step (anticipation).
Note, that the moves are done in parallel, so the model remains free of colli-

sion. This leads to the effective gap

dom (1) :=d, (1) + max@vy " (t) - d,.,0)

seen by vehicle # at time ¢. In this formula d; is a safety distance and

VIR (2) = min(d, (0, v, (1) 1

is a lower bound of how far the vehicle m will move during this time-step.
d, (t) is the number of free cells between car m and car / in front. Brake
lights are further components of the anticipating driving. They allow drivers
to react to disturbances in front earlier by adjusting their speed. The variable
b (t )= on if car n has its brake lights on and b (t)=0ff if they are off.

Several empirical observations suggest that drivers react in a temporal-
rather than a spatial-horizon (6, 17). For this reason the velocity-dependent
temporal interaction horizon

t; (t) := min(v, (t),h)

is introduced in the model. The constant /& determines the temporal range of
interaction with the brake light b (#) of the car m ahead. Car n does only
react to b, (t) if the time to reach the back of car m, assuming constant veloc-

ity (v, = const.) and car m standing still, is less than t; (t) , i.e.,
dn m (t) S
mi7

v (O t ().

t:,m (t) =
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The estimations for 4 vary from 6 s (6), 8 s (17), 9 s (10) to 11 s (4). An-
other estimation can be obtained from the analysis of the perception sight
distance. In (21) velocity-dependent perception sight distances are presented
that, for velocities up to 128 km/h, are larger than 9 s. Therefore 4 is set to 6
s as a lower bound for the time headway (16).

The third modification of the Nagel-Schreckenberg model implemented
in the simulator is a velocity dependent randomization, which means that
the probability constant p is replaced with a probability function dependent
on the velocity of the vehicle. Further, the probability is also a function of
the brake light of the next vehicle in front. In every time-step for every
vehicle n with vehicle m next in front, the probability that the vehicle n
brakes is

p,, ifb,(t)=onand ) (t)<t:(t),

p = p(vn (t)ibm (t)) = p()’ If Vn (t) = Ov
Py, default.

The parameter p, tunes the upstream velocity of a wide moving jam and p,
controls the strength of the fluctuations.

With this parameter set the model is calibrated to the empirical data. The
best agreement can be achieved for d, = 7 cells, h = 6, p, = 0.96, p, = 0.5,
and p, = 0.1. For a detailed analysis of the parameter set see (16).

To sum up, to move the vehicles forward in the network the algorithm
executes the following steps in parallel for all vehicles n:

3.1. Move forward (drive):
— Step 0: Initialization:

For car n find the next car m in front. Set p (t) := p(v (t),b,(t)) and b (t+1):=
off.

— Step 1: Acceleration:

v, (t+>): )
3 min(v, (t)+1,v default.

max)’

1) _ {vn(t), if b,(t) =on or (b,(t)=on and t(t) <t:(t)),

16



— Step 2: Braking:
v, (t +g) = min(v, (t +£), dem (b))
3 K
Turn brake light on if appropriate:
. 2
if v, (t+ 5) <V, (t), then b, (t+1):=on.
— Step 3: Randomization with probability p (7):

max(v, (t + E) -1,0), with probability p, (t),
V,(t+1):= ) 3
v, (t+ E)’ default.

Turn brake light on if appropriate:
if p=p, and v, (t+1) <vn(t+§), then b, (t+1) :=on.

— Step 4: Move (drive):

X, (t+1) = x, () +v, (t+1).

Free lane changes are needed so that vehicles can overtake slower driving
passenger cars and trucks. When designing rules for the free lane changes,
one should take care of that overtaking vehicles do not disturb the traffic on
the lane they use to overtake to much, and one has to take account of Ger-
man laws, which prohibit overtaking a vehicle to the left. Further, it is ad-
vantageous to prohibit trucks to drive on the leftmost lane in the simulation,
because a truck overtaking another truck forces all vehicles on the left lane
to reduce their velocity and produces a deadlock that may not resolve for a
long time (14).

One more variable is needed for the free lane changes, [ € {left, right,
straight} notes if the vehicle n should change the lane during the actual
time-step or not. This variable is not needed if the lane changes are executed
sequentially, but we prefer a parallel update. For the left free lane changes
the simulator executes the following steps parallel for all vehicles n:
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3.2. Overtake on the lane to the left:
— Step 0: Initialization:

For car n find the next car m in front on the same lane, the next car s in front
on the lane left to car n, and the next car r behind car s. Set 1 := straight.

— Step 1: Check lane change:

if b,(t) =off and v,(t)>d,,(t) and d:T(t)>v,(t) and d,,(t) > v,(t),
then set | = left.

— Step 2: Do lane change:

if 1, = left, then let car n change lane to the left.

The definition of the gaps dr?ﬁs (t) and dfff1 (t) in the lane-change-blocks is

an obvious extension of the above definition; one simply inserts a copy of
the car n on its left or right side. These overtake rules used by the simulator
can verbally be summed up as follows: first, a vehicle checks if it is hin-
dered by the predecessor on its own lane. Then it has to take into account
the gap to the successor and to the predecessor on the lane to the left. If the
gaps allow a safe change the vehicle moves to the left lane. For the right
free lane changes the simulator executes the following steps parallel for all
vehicles n:

3.3. Return to a lane on the right:

— Step O: Initialization:

For car n find the next car m in front on the same lane, the next car s in front
on the lane right to car n, and the next car r behind car s. Set [ := straight.

— Step 1: Check lane change:

if b, (t)=off andt; (t)>3and (t],,(t) > 6 0r v, (t) >d, . (t)) and d, , (t) > v, (),
thenset |, :=right.
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— Step 2: Change lane:

if |, =right, then let car n change lane to the right.

Thus, a vehicle always returns to the right lane if there is no disadvantage in
regard to its velocity and it does not hinder any other vehicle by doing so.

It should be noted, that it is not possible to first check for all lane changes
to the left and to the right and then perform them all in parallel without
doing collision detection and resolution. This would be necessary because
there are autobahns with three lanes and more. To overcome this difficulty,
the lane changes to the left, i.e., overtake, are given a higher priority than
the lane changes to the right. For a systematic approach to multi-lane traffic,
i.e., lane-changing rules, see, for example, (19). For a detailed discussion of
the different models see (3, 9, 23) and the references therein.

4. Validation of the Model

A core requirement in the discussion of the simulation model is the detailed
comparison with empirical data. Only if the model maps the real world
sufficiently, it is capable to deal as the kernel of the online-simulation. Fur-
thermore, one of the most puzzling points for any model is to reproduce
significant empirical data on a macroscopic and microscopic level as well as
the empirical observed coexistence of stable traffic states and, especially,
the upstream propagation of wide moving jams through both free flow and
synchronized traffic with constant velocity and without disturbing these
states (13).

In analogy to the empirical setup, the simulation data are evaluated by a
virtual loop detector, i.e., the number of cars passing a given link is meas-
ured as well as their velocity. This allows for the calculation of aggregated
minute data of flow, speed and occupancy like for the empirical data.

The simulation run emulates a few hours of highway traffic, including
the realistic variation of the number of cars that are fed into the system.
Thereby, a large input rate leads to the emergence of synchronized flow,
whereas at small rates small short-living jams evolve, as expected, in the
vicinity of on-ramps, because of the local perturbations (8).
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Fig. 2: Comparison of the simulation results (a) with real traffic data (b). Diamonds corre-
spond to free flow, squares to synchronized traffic, and circles to wide jams. Each point repre-
sents the average over an one-minute interval. The empirical data are from a detector on the
A40 near Moers junction (synchronized state) and near Bochum-Werne.

The simulation shows that the empirical results can quantitatively be recov-
ered (see Fig. 2). A detailed analysis of the two dimensional region of syn-
chronized traffic in the fundamental diagram reveals a high correlation
between the two lanes with respect to the velocity time-series of both lanes.

5. Implementation of the Topology

An important point in the design of a simulator is the representation of the
road network. Therefore, the network is divided into links. The main links
connect the junctions and highway intersections representing the carriage-
way. Each junction and intersection consists of another link, like on/off-
ramps or right/left-turn lanes. The attributes of each link are the length, the
number of lanes, a possible speed limit, and the connecting links. In case of
more than one connecting link, like at off-ramps or highway intersections,
there is also a turning probability for each direction. The turning probability
is calculated by taking into account the measured traffic data. All these
spatial and functional data was collected to build a digital image of the
topology of the whole network.
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Area 34,000 km?2
Inhabitants 18,000,000
On- and off-ramps 862
Intersections 72

Online loop detectors 4,000
Offline loop detectors 200
Number of links 3,698
Overall length 2,250 km

Tab. 1: Design parameters of the North Rhine-Westphalian autobahn network.

Another crucial information concerns the positions of the installed loop
detectors. They also have to be included in the digital map of the network.
The positions in the simulation are called ‘checkpoints’, and at these check-
points the simulation is adapted to the measured traffic flow of the loop
detectors. Tab. 1 shows some design parameters of the network. North
Rhine-Westphalia is approximately one fifth of whole of Germany with
respect to many numbers, e.g., number of cars, inhabitants, length of the
autobahn network, et cetera.

6. Additional Rules for Complex Real Networks

The cellular automaton model for traffic flow used by the simulator was
designed to be able to reproduce the main aspects of the fundamental dia-
gram for real traffic flows (vehicle flow as a function of vehicles per km)
and the fundamental microscopic properties, like the time headway distribu-
tion. This ability was verified by testing it on topologically simple net-
works. When simulating the traffic on a large and topologically complex
network, like the autobahn network in North Rhine-Westphalia, some ex-
tensions to the cellular automaton model have to be considered. One is the
guidance of vehicles and another is a strategy to integrate the measured flow
from the loop detectors into the simulation.

A real driver usually has the intention to reach some goal with his driv-
ing. This makes it necessary to incorporate routes in the modeling. In prin-
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ciple, there are two different strategies to solve this problem. One can assign
an origin and a destination to the road user and then guide him through the
network according to this route (20, 22). For our network origin-destination
information with a sufficient temporal and spatial resolution is not avail-
able. Therefore, the vehicles are guided in the network according to the
probabilities calculated on the basis of the measured data. This means that a
vehicle is not guided through the whole network, but every time it reaches a
new link it will decide in accordance with the measured probabilities how it
leaves the link.

To implement this we use forced lane changes. Forced lane changes are
necessary so that the vehicles can drive from on-ramps on the autobahn,
from the autobahn on off-ramps, when the autobahn narrows, and when
vehicles drive from one particular section of the autobahn on another over
an intersection. Forced lane changes differ from free lane changes in a fun-
damental way. While free lane changes give vehicles the opportunity to
overtake vehicles driving slower and thus reduce disturbances, forced lane
changes stem from the need to reach a node and are obviously an additional
source for disturbances.

The simulator uses gradually increasing harsh measures to force lane
changes. At the beginning of an area where a vehicle could change to the
target lane, it does so, if the gap is sufficiently large and no vehicle is se-
verely hindered. At the end of the area it will bully into any gap regardless
of velocity differences. Further, a vehicle driving on its target lane should
not leave the lane to overtake. An efficient implementation of this strategy
is to store the lane change information in the cells. This gives a fast access
through the coordinates of a vehicle. Of course this information depends on
the node chosen and whether the vehicle is a truck or a passenger car. Be-
cause of this, every link has several versions of the lane change information.

To incorporate the real world measurements from the loop detectors into
the simulation vehicle-moving, inserting, and removing algorithms have to
be applied. This is done at the so-called checkpoints, which are located at
those places in the network where a complete cross-section is available, i.e.,
all lanes are covered by a loop detector. Every time, when checkpoint-data
is provided, the simulator uses the measured values to adjust the traffic state
in the simulation. The first step is to try to move vehicles behind the check-
point in front of it and vice versa. If this is not sufficient, vehicles are in-
serted or removed. This should be preferred to pure insert/removal strate-
gies, as these can completely fail due to positive feedback if a non-existing
traffic jam is produced by the simulation. In this case the simulation meas-
ures a low flow in comparison with the real data, so vehicles are added
periodically to the ever growing traffic jam leading to a total breakdown.
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7. The Website www.autobahn.nrw.de

The design of the simulator was financially supported by the Ministry of
Transport, Energy and Spatial Planning of North Rhine-Westphalia, the
reason being, that it wanted a novel web-based traffic information system
for the public. This information system is provided by a Java applet at the
URL www.autobahn.nrw.de (Fig. 3). The Java applet draws a map of North
Rhine-Westphalia, where the autobahns are colored according to the level
of service of the simulated traffic state, from light green for free flow, over
dark green and yellow for dense and very dense synchronized flow, to red
for a traffic jam. Additionally, after numerous requests, we integrated a
color-blind mode, where dark green is replaced by dark grey and yellow by
blue. Further, construction areas are drawn at the appropriate positions on
the map and their estimated influence on the traffic is shown through red
construction signs for a high risk of a traffic jam and green construction
signs for a low risk. Road closures, which have a deep impact not only on
the specific track the closure happens, but also on the traffic in a wide part
of the network, are shown as well.

To make orientation easier the number and name of each junction is also
written in the status bar when the mouse moves over the pictogram of the
junction. All this valuable information assists the road user to choose the
best route and the best time for his trip.
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Fig. 3: The current traffic state is visualized at www.autobahn.nrw.de using a Java applet.
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The rising accesses to OLSIM and the nearly throughout positive feedback
show, that this information system is accepted by many people and used
regularly. The daily requests increased from about 20,000 on work days at
the beginning in September 2002 up to 200,000 regular accesses after the
implementations of the 30 minute forecast in March 2003 and the 60 minute
forecast in December 2003. The positive results are underlined by TV-
stations, newspapers, and magazines which have made positive tests where
they compared the actual traffic state to the traffic state presented by our
simulation.

8.  Summary

In this paper we present a new advanced traffic information system OLSIM
which gives the internet user the opportunity to get the information about
the current traffic state and a 30 and 60 minute prognosis of the autobahn
network of North Rhine-Westphalia. The system rests upon a microscopic
traffic simulator of the autobahn network in North Rhine-Westphalia. The
simulator uses an advanced cellular automaton model of traffic flow and
adjusts the traffic state in accordance with measurements of the real traffic
flow provided by 4,000 loop detectors installed locally on the autobahn. The
cellular automaton model, the abstraction of the network, the guidance of
the vehicles, and the data integration strategies to periodically adjust the
traffic flow in the simulation in accordance with the measured flow on the
autobahn were discussed, as well as some details on the efficient implemen-
tation of the dynamics and the presentation of the simulated traffic state to
the public. A graphical user interface implemented by a Java applet can be
accessed by every internet user. In a simple to navigate window the user can
choose between the current traffic state, the 30, and the 60 minute progno-
sis. Additional information like road works can be chosen with a simple
click.
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Berechnung von Feynman-Diagrammen mit
FeynArts, FormCalc und LoopTools

Thomas Hahn
Max-Planck-Institut fiir Physik, Miinchen

Abstract

In diesem Beitrag werden die drei Programmpakete FeynArts, FormCalc und LoopTools vor-
gestellt, mit denen die Berechnung von Feynman-Diagrammen mit bis zu einer Schleife sehr
weitgehend automatisiert werden kann. Solche Berechnungen sind fiir die Uberpriifung der ge-
genwirtigen Theorie der Elementarteilchen, d.h. der fundamentalen Naturgesetze unabdingbar,
ohne automatisierte Schritte jedoch sehr aufwendig und fehleranfillig. Durch die Automatisie-
rung konnen binnen Minuten Ergebnisse ausgerechnet werden, fiir die frilher Mannjahre notig
waren.

1 Einfiihrung

In der Teilchenphysik werden quantenfeldtheoretische Modelle benutzt, um
die Elementarteilchen und ihre Wechselwirkungen zu beschreiben. In Streu-
experimenten wird hingegen z.B. der Wirkungsquerschnitt gemessen, das
ist vereinfacht ausgedriickt die (geeignet normierte) Wahrscheinlichkeit, be-
stimmte Teilchen im Detektor zu sehen. Um nun die theoretische Vorher-
sage mit dem Experiment vergleichen und damit die Theorie testen zu kon-
nen, steht man vor dem Problem, aus dem theoretischen Modell zundchst
den Streuoperator und dann daraus den Wirkungsquerschnitt zu berechnen.
Dies wird in der Regel storungstheoretisch mit Hilfe von Feynman-Diagram-
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men gemacht, d.h. man betrachtet die Wechselwirkung der Teilchen als eine
kleine Storung ihrer andernfalls freien Ausbreitung und entwickelt den Streu-
operator mathematisch in eine Reihe in der Kopplungsstirke.

Beispiel: Das folgende Feynman-Diagramm trigt zum Wirkungsquer-
schnitt des Prozesses eTe™ — #t (Top—Antitop-Paarproduktion an einem
Elektron—Positron-Beschleuniger) bei:

Dieses Diagramm gibt nicht nur ein intuitives Bild von dem Streuprozef}, es
146t sich auch nach Regeln, die durch das Modell festgelegt sind, eindeutig in
Formeln, die sog. Feynman-Amplituden, tibersetzen. Insbesondere symboli-
siert jeder der Punkte (o) eine Kopplung der Stirke /a zwischen den Fermio-
nen und dem zwischen ihnen ausgetauschten Photon (), wobei o >~ 1/137
die Feinstrukturkonstante ist. Obiges Diagramm ist somit insgesamt von der
Ordnung «a. In der ndchsten Ordnung gibt es schon wesentlich mehr Dia-
gramme, von denen hier nur drei Représentanten gezeigt sind:

e ~y t

Hier hat jedes Diagramm vier Punkte, ist also von Ordnung o2, gleichzeitig
erkennt man aber auch, da} jetzt jedes Diagramm eine geschlossene ,,Schlei-
fe* besitzt. Das ist kein Zufall, denn die Storungsreihe ist gleichzeitig auch
eine Entwicklung in der Anzahl der Schleifen. Man spricht von ,,Baumdia-
grammen* (keine Schleife), ,,Ein-Schleifen-Diagrammen,* ,,Zwei-Schleifen-
Diagrammen® usw. Physikalisch lassen sich die Schleifen als Quantenfluk-
tuationen interpretieren, im linken Diagramm z.B. spaltet das intermediire
Photon in ein virtuelles Fermion—Antifermion-Paar (f f) auf.

Je mehr Schleifen man mitnimmt, desto hoher ist die Ordnung in o und
desto genauer das Ergebnis. Dies ,,bezahlt” man jedoch mit der Anzahl der zu
berechnenden Diagramme, die mit der Anzahl der Schleifen rasch anwéchst.

Im folgenden werden die drei Programmpakete FeynArts, FormCalc und
LoopTools vorgestellt, mit denen derartige Rechnungen mit bis zu einer
Schleife sehr weitgehend automatisiert werden konnen. Dazu werden zu-
nichst in den Abschnitten 2 und 3 die mathematischen Probleme und das
algorithmische Vorgehen bei der Berechnung von Feynman-Diagrammen be-
schrieben. In Abschnitt 4 wird dann die Benutzung von FeynArts, FormCalc
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und LoopTools beschrieben. Abschnitt 5 gibt einen Abrif} tiber die Entwick-
lung und Abschnitt 6 einen Uberblick iiber Anwendungen der Programme.

2 Feynman-diagrammatische Rechnungen

Aus der mathematischen Perspektive sind nur die Integrale, die den Schlei-
fen in den Feynman-Diagrammen entsprechen, ,,schwierig.* Bereits auf dem
Zwei-Schleifen-Niveau ist es nicht mehr allgemein méglich, die Integrale
auszurechnen, d.h. sie durch elementare Funktionen auszudriicken.

Die Ein-Schleifen-Integrale sind jedoch bekannt, sie lassen sich durch Lo-
garithmen und Dilogarithmen ausdriicken. Es ist daher moglich, eine Rechen-
vorschrift fiir ein beliebiges Diagramm mit bis zu einer Schleife anzugeben,
d.h. die Berechnung ist streng algorithmisch und 146t sich im Prinzip voll-
stindig automatisieren. Dies ist zu keinem geringen Teil das Verdienst der
Herren ’t Hooft und Veltman, die u.a. dafiir 1999 den Nobelpreis erhielten.

Abgesehen von den Integralen 146t sich die verbleibende Rechnung mit
algebraischen Methoden bestreiten. Was das Leben dennoch schwer macht,
ist die extrem schnell anwachsende Anzahl der Feynman-Diagramme, wenn
man Prozesse mit mehr dufleren Linien oder mehr Schleifen, oder Modelle
mit mehr Teilchen und Kopplungen betrachtet. Um eine Vorstellung davon
zu geben, ist in der folgenden Tabelle die Anzahl der Ein-Schleifen-Topolo-
gien fiir einen 2 — 2-, 2 — 3- und 2 — 4-ProzeB3* aufgelistet, das ist die
Anzahl der Moglichkeiten, die vorgegebenen dufleren Linien miteinander zu
verbinden, so daf} die resultierenden Diagramme genau eine Schleife besit-
zen:

Prozel Anzahl Schleifen = Anzahl der Topologien

2—2 1 99
2—-3 1 947
2 -4 1 11460

Noch dramatischer wichst die Zahl der Topologien mit der Anzahl der Schlei-
fen:
Prozel Anzahl Schleifen = Anzahl der Topologien

2—2 0 4
2—-2 1 99
2—-2 2 2214
2—2 3 50051

Es ist eindeutig die Kombinatorik, die auch auf moderner Hardware die Mach-
barkeit auf relativ kleine Werte des Produkts (Anzahl der Schleifen)
(Anzahl der dufleren Linien) beschrinkt.

*Die Notation ,,;m — n‘ bezeichnet die Zahl der einlaufenden bzw. auslaufenden Teilchen.

31



Die in Abschnitt 4 vorgestellten Programme sind bisher auf Ein-Schleifen-
Rechnungen beschriinkt, da wie erwihnt die hoheren Schleifenintegrale der-
zeit nur teilweise bekannt sind. Auf dem Ein-Schleifen-Niveau ist momentan
die Berechnung von 1 — 2- und 2 — 2-Prozessen ohne jede Einschrinkung
moglich. Fiir 2 — 3-Prozesse fehlt noch eine letzte Komponente, das Fiinf-
Punkt-Integral, dessen Einbau in das bestehende Programm bereits in Arbeit
ist. Einige physikalisch relevante 2 — 3-Rechnungen benétigen diese Funk-
tion allerdings nicht und sind schon jetzt moglich, z.B. [1]. Mit einer erst
kiirzlich implementierten neuen Methode zur Vereinfachung von Fermion-
ketten scheint es moglich, auch die sehr rechenaufwendigen 2 — 4-Prozesse
mit einer Schleife ins Auge zu fassen — hier wire aus physikalischer Sicht be-
sonders die Berechnung von e*e™ — 4 Fermionen wiinschenswert — jedoch
wird dies angesichts der enormen Zahl von Feynman-Diagrammen wohl noch
einige Zeit und Ideen erfordern.

3 Schritte zur Berechnung eines Feynman-Diagramms

Im folgenden werden die Schritte zur Erzeugung und Berechnung der Feyn-
man-Diagramme aufgelistet, wie man sie ,,mit Hand* anwenden wiirde. Die
Implementierung in FeynArts, FormCalc und LoopTools, die im nichsten Ab-
schnitt vorgestellt wird, ist eng an dieses Schema angelehnt.

1. Stelle eine Liste aller Diagramme auf, die zu dem betrachteten Streuprozef3
beitragen:

a) Zeichne alle Moglichkeiten, die einlaufenden mit den auslaufenden Li-
nien so zu verbinden, daf} die gewiinschte Anzahl von Schleifen entsteht.
b) Bestimme anhand des Modells, welche Teilchen auf jeder Linie ,,lau-
fen* konnen, wobei die dufleren Linien mit den Teilchen im Anfangs- und
Endzustand des betrachteten Streuprozesses identifiziert werden.

2. Ubersetze die erhaltenen Diagramme mittels der Feynman-Regeln, die aus
dem Modell folgen, in Formeln.

3. Vereinfache die Formeln analytisch. Dies geschieht vor allem in Hinblick
auf die folgende numerische Auswertung, so miissen z.B. offene Indizes
kontrahiert werden, tensorielle Objekte zerlegt werden usw.

4. Schreibe ein Programm, das die Formeln numerisch auswertet.

Offensichtlich sind hierbei Probleme sehr verschiedener Natur zu 16sen, z.B.
ist die Diagrammerzeugung eine topologisch-kombinatorische Aufgabe oder
die Anwendung der Feynman-Regeln ein Datenbankzugriff. Hinzu kommt,
daf} die Amplitude algebraische Objekte enthilt, die fiir die direkte numeri-
sche Auswertung ungeeignet sind, wie Tensoren oder Generatoren von Sym-
metriegruppen, man aber andererseits eine schnelle numerische Auswertung
des Endergebnisses braucht, z.B. fiir Monte-Carlo-Generatoren, wo u.U. meh-
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rere Millionen Events gesampled werden miissen.

Ein wichtiges Hilfsmittel bei der Umsetzung obigen Schemas ist daher
die Computeralgebra, mit der die strukturellen und algebraischen Operatio-
nen bewiltigt werden, in Kombination mit schneller und préziser numerischer
Auswertung (,,Number Crunching®) in einer Hochsprache.

4  FeynArts, FormCalc und LoopTools

FeynArts, FormCalc und LoopTools sind drei Programmpakete, mit denen
sich Feynman-Diagramme erzeugen, analytisch vereinfachen und numerisch
auswerten lassen. Mit Hilfe dieser Programme ist es moglich, Streuprozesse
mit bis zu einer Schleife sehr weitgehend zu automatisieren und damit eine
Arbeit, die noch vor kurzem in Mannjahren bemessen wurde, in Minuten zu
erledigen.

Die modulare Unterteilung in drei verschiedene Programmpakete ist nicht
nur von der Art der Aufgaben her sinnvoll, vielmehr werden von vielen Be-
nutzern nur Teile des Programms benutzt, so wird FeynArts etwa auch fiir
die Erzeugung von Zwei-Schleifen-Diagrammen eingesetzt [2], selbst wenn
diese derzeit nicht von FormCalc vereinfacht werden konnen.

FeynArts und FormCalc sind Mathematica-Programme und auch Loop-
Tools besitzt ein Mathematica-Interface. Dieser Umstand ist sehr hilfreich,
da er dem Benutzer erlaubt, die erhaltenen Ausdriicke an praktisch jeder be-
liebigen Stelle mit Hilfe des Mathematica-Befehlssatzes zu modifizieren. Ein
Beispiel: Um dem Higgs-Propagator eine endliche Breite zu geben, mufl man
lediglich das Endergebnis mit der folgenden Substitutionsregel in Mathema-
tica transformieren: Den [p_, MH2] -> Den[p, MH2 - I MH GammaH].

4.1 FeynArts

FeynArts erzeugt Feynman-Diagramme und -Amplituden mit derzeit bis zu
drei Schleifen. Die Information iiber das betrachtete Modell wird aus ei-
ner speziellen Datei, dem ,,Model-File,” gelesen. Derzeit existieren Mo-
del-Files fiir das elektroschwache Standardmodell mit und ohne QCD (ein-
schlieflich Counter-Termen), das Minimale Supersymmetrische Standard-
modell (MSSM) und das Zwei-Higgs-Dublett-Modell. Der Benutzer kann
aber auch eigene Model-Files erstellen oder vorgegebene modifizieren. Au-
Berdem steht ein Hilfsprogramm zur Verfiigung, mit dem das Model-File aus
der Lagrangedichte der zugrundeliegenden Theorie erzeugt werden kann.
Die Erzeugung der Feynman-Amplituden verlduft im wesentlichen wie in
Abschnitt 3 skizziert: Zunichst werden mit der FeynArts-Funktion Cre-
ateTopologies die Topologien mit der gewiinschten Anzahl duf3erer Bei-
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ne und Schleifen erzeugt, z.B. die Baum-Topologien (null Schleifen) fiir einen
2 — 2-ProzefB:

top = CreateTopologies[0, 2 -> 2]

Die so erhaltenen Topologien lassen sich mit der Paint-Funktion zeichnen:

> o<_1 K

Die Diagramme konnen entweder am Bildschirm, als PostScript- oder als
IATEX-Datei ausgegeben werden, wobei letzteres Format problemlos in Publi-
kationen eingebunden sowie auf einfache Weise nachbearbeitet werden kann.

In diese Topologien werden nun Felder eingesetzt, d.h. es werden zu ei-
nem vorgegebenen Streuprozef alle im Modell moglichen Kombinationen ge-
sucht, die Linien der Topologie mit Feldern des Modells zu bestiicken. Dazu
wird die Funktion InsertFields auf das Ergebnis von CreateTopo-
logies angewendet:

ins = InsertFields|[top,

{-Fl[2,{1}], FI[2,{1}]} -> {-F[3,{3}], FI[3,{3}1}]
Hier werden die Diagramme fiir den ProzeB e™e™ — ft aus den in top
gespeicherten 2 — 2-Topologien erzeugt. Als Model-File wird die Vor-
einstellung SM.mod, das elektroschwache Standardmodell benutzt. Dieses
gibt auch die Bezeichnung der Felder vor: in SM.mod heiflt das Elektron
F[2,{1}], es ist also das erste Mitglied der Fermionklasse Nr. 2, die aus
Elektron, Myon und Tauon besteht, und analog heillit das Top-Quark
F[3, {3}], wobei die dritte Fermionklasse das Up-, Charm- und Top-Quark
umfalt. -F[2, {1}] und -F[3, {3} ] sind die jeweiligen Antiteilchen.

Auch die Ergebnisse von InsertFields lassen sich mit Paint zeich-
nen. Man sieht, da} einige Topologien nicht realisiert werden konnen, z.B.
weil die Erhaltung der elektrischen Ladung verletzt wire, andere dagegen
mehrfach vorkommen:

Schlielich miissen die Feynman-Regeln angewandt werden, um die Ampli-
tuden zu erhalten. Das geht mit

amp = CreateFeynAmp|[ins]
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TECHNISCHER EXKURS FEin fiir den Benutzer zwar weitgehend unsicht-
bares, fiir die weitere Vereinfachung aber enorm wichtiges Konzept ist die
Unterscheidung von drei Ebenen (,,Levels®) von Feldern. Auf dem ,,Generic
Level“ werden nur die Typen der Felder spezifiziert, z.B. F = Fermion oder S
= Skalarfeld. Auf dem ,,Classes Level* werden dann Klassen solcher Felder
betrachtet, z.B. F[3] = die Klasse der Quarks mit Isospin —&—%. SchlieBlich
konnen auf dem ,,Particles Level* einzelne Reprisentanten der Klassen aus-
gewdhlt werden, so z.B. F[3, {3} ] = das Top-Quark.

Da die kinematische Struktur eines Diagramms schon auf dem Generic
Level festliegt, muf} die aufwendige Vereinfachung der kinematischen Ob-
jekte wie z.B. die Tensorreduktion (s.u.) nur fiir die generischen Diagram-
me durchgefiihrt werden, von denen es in der Regel erheblich weniger gibt.
Von den vier zuvor gezeigten Diagrammen etwa miissen nur zwei wirklich
ausgerechnet werden: anstelle der linken zwei Diagramme rechnet man nur
ein Diagramm mit Austausch eines generischen Skalarfelds aus und analog
fiir die rechten zwei Diagramme. Durch Einsetzen der tatsdchlichen Kopp-
lungskonstanten in die generische Amplitude erhdlt man den vollstindigen
Ausdruck fiir alle vier Diagramme.

4.2 FormCalc

FormCalc vereinfacht die von FeynArts ausgegebenen Amplituden analytisch.
Das Ergebnis kann entweder direkt als Mathematica-Formel weiterverwendet
werden (z.B. fiir bestimmte Konsistenzchecks) oder als Fortran-Programm
zur Berechnung des Wirkungsquerschnitts ausgegeben werden. In der ana-
Iytischen Vereinfachung werden konkret folgende Umformungen vorgenom-
men (fiir mathematische Details siehe z.B. [3]):

— Kontraktion aller Indizes,

Berechnung der fermionischen Spuren,

Vereinfachung der dufleren Spinor- und Gruppenstrukturen,
Reduktion der Tensorintegrale auf skalare Koeffizienten,

— Einfiihren von Abkiirzungen.

Das Einfiihren von Abkiirzungen ist ein sehr wesentlicher Punkt, mit dem die
GroBe des Ergebnisses drastisch reduziert werden kann.

Alle diese Operationen sind in einer Funktion fiir den Benutzer zusammen-
gefalit, die auf das Ergebnis von CreateFeynAmp angewendet wird:

result = CalcFeynAmp [amp]

Intern delegiert CalcFeynamp viele Aufgaben an das Computeralgebra-
Programm FORM [4] (daher der Name FormCalc), das zwar nur einen be-
grenzten, speziell auf die Anwendungen in der Teilchenphysik zugeschnit-
tenen Befehlssatz hat, dafiir aber sehr schnell ist und auch mit sehr groflen
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Ausdriicken miihelos fertig wird. FORM ist jedoch nicht unbedingt leicht zu
programmieren, daher bleibt der Austausch von Programmcode und Daten
zwischen Mathematica und FORM dem Benutzer erspart.

Zur weiteren numerischen Auswertung wird das Ergebnis von Calc-
FeynAmp als Fortran-Programm ausgegeben:

SetupCodeDir["fortrandir"]
WriteSquaredME [result, {}, Abbr[], "fortrandir"]

SetupCodeDir legt ein Unterverzeichnis namens fortrandir an und
kopiert die notwendigen Treiberprogramme dort hinein. Danach schreibt
WriteSquaredME das Ergebnis der obigen Rechnung zusammen mit den
von CalcFeynAmp eingefithrten Abkiirzungen, die mit Abbr [] abgeru-
fen werden, als Fortran-Code in dieses Verzeichnis. Dazu wird ein entspre-
chendes makefile angelegt, wodurch auch die Kompilierung automatisiert
wird. Ein wesentlicher Punkt ist, da die von WriteSquaredME ausgege-
benen Dateien in sich vollig abgeschlossen sind und nicht mehr von Hand
nachbearbeitet werden miissen, was viele ,,menschliche* Fehlerquellen aus-
schliet. Hingegen werden die Treiberprogramme vom Benutzer angepalt,
dort miissen z.B. die numerischen Werte der Modellparameter angegeben
werden.
Von den Anpassungen der Treiber abgesehen geniigt ein

./configure
make

im neu angelegten Verzeichnis fortrandir, um das erzeugte Programm
zu kompilieren. Ausgefiihrt wird es z.B. mit

./run uuuu 350 1000

was den Wirkungsquerschnitt fiir unpolarisierte du3ere Teilchen im Energie-
bereich von 350 bis 1000 GeV berechnet. Man erhilt ein Datenfile run-
tot.pol=UUUU.E=00350-01000,das in Abb. 1 geplottet ist.

Der gesamte Ablauf, von CreateTopologies bis zum Plotten des Wir-
kungsquerschnitts, dauert nur wenige Minuten.

Der generierte Fortran-Code wird von FormCalc in verschiedener Weise
optimiert, so werden z.B. mehrfach vorkommende Unterausdriicke nur ein-
mal berechnet, ebenso wird die Liste der Abkiirzungen so gruppiert, dafl
beim Durchlaufen der internen Schleifen nur die sich wirklich dndernden Tei-
le neu berechnet werden miissen. Bei den Treiberprogrammen wurde grof3er
Wert auf modularen Aufbau in einer iibersichtlichen und gut dokumentier-
ten Programmierweise gelegt. Alles in allem wird damit das Ziel verfolgt,
ein effizientes und gleichzeitig fiir den Benutzer moglichst durchschauba-
res Programm zu erstellen, denn es gibt viele Fille, in denen der Benutzer
das Programm nicht in seiner eigentlichen Funktion benutzen will, sondern
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Abb. 1: Der Wirkungsquerschnitt des Streuprozesses e* e~ — tt

es entweder als Modul in existierende Programme einbinden oder aber zu-
sitzliche Funktionalitit einbauen mochte. Die Implementierung des Fortran-
Generators einschlieSlich der zugehdrigen Treiberprogramme zéhlt daher zu
den Programmteilen von FormCalc, die im Laufe der Versionen die grofiten
Anderungen durchgemacht haben.

SchlieBlich ist noch ein Wort iiber die Wahl der Sprache angebracht: For-
tran 77 wird von vielen Programmierern als ,,Dinosaurier” unter den Pro-
grammiersprachen verschméht, dabei ist es im grofen und ganzen fiir genau
die Aufgabe optimiert [5], die hier gebraucht wird: ,,FORmula TRANslation,*
effizientes und prézises Auswerten langer Formeln. Beispielsweise sind in
Fortran so wichtige Dinge wie komplexe Zahlen schon eingebaut. Dazu exi-
stieren hervorragende Compiler fiir fast alle Plattformen. Unter Physikern ist
Fortran nach wie vor weit verbreitet, aulerdem es ist relativ unkompliziert,
Fortran-Routinen auch von anderen Sprachen aus aufzurufen.

4.3 LoopTools

Bislang wurde iiberhaupt noch nicht auf die in Abschnitt 2 erwihnten Ein-
Schleifen-Integrale eingegangen. Diese werden von FormCalc durch spezi-
elle Funktionen der mathematischen Physik, die Passarino—Veltman-Funk-
tionen, ausgedriickt, ansonsten aber weitgehend als ,,.Black Boxes* behan-
delt. Die numerische Implementierung dieser Funktionen geschieht durch die
LoopTools-Bibliothek, die alle Ein-Schleifen-Integrale bis zur Vier-Punkt-
Funktion zur Verfiigung stellt, und zwar einschlieBlich aller Koeffizienten-
Funktionen, die bei der Zerlegung der Tensorintegrale bis zur vierten Stufe
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anfallen. Zusitzlich enthélt es die Ableitungen der Zwei-Punkt-Funktionen,
die zur Berechnung der Renormierungskonstanten gebraucht werden.

LoopTools ist eine Fortran-Bibliothek, stellt dem Benutzer aber neben dem
Fortran- auch ein C++- und Mathematica-Interface zur Verfiigung. Insbeson-
dere das Mathematica-Interface ist sehr einfach zu bedienen: man muf3 nur
mit Install ["LoopTools"] das Package laden, danach stehen alle Ein-
Schleifen-Integrale als Mathematica-Funktionen zur Verfiigung.

Fiir die skalaren Integrale greift LoopTools auf die FF-Bibliothek [6] zu-
riick, in der diese in numerisch stabiler Weise implementiert und fiir viele
Fille getestet sind. Es sollte hierbei erwihnt werden, dafl die numerische Be-
handlung nicht einfach ist, da in verschiedenen Bereichen des Phasenraums
unterschiedliche Parametrisierungen bzw. Naherungen benétigt werden, etwa
nahe der Schwelle, oder wenn zwei Impulse fast kollinear sind. Um nume-
rische Stabilitdt zu erreichen, miissen also viele Spezialfille beriicksichtigt
werden. Aus diesen Griinden besitzt LoopTools auch eine ,,check‘-Version,
in der alle skalaren Integrale durch eine zweite, von FF unabhéngige Imple-
mentierung kontrollgerechnet werden und alle Diskrepanzen oberhalb einer
vom Benutzer wihlbaren Schranke ausgegeben werden.

Mit Compilern, die den Datentyp REAL*16 zur Verfiigung stellen, ist
LoopTools auch in einer vierfach-genauen Version verfiigbar. Dies wird in
seltenen Fillen gebraucht, wenn es sehr grofe Kompensationen innerhalb ei-
ner Amplitude gibt.

Da die Berechnung der Ein-Schleifen-Integrale einen betrichtlichen Teil
der CPU-Zeit ausmachen kann, wird intern ein Cache-Mechanismus verwen-
det, um Mehrfachberechnungen zu vermeiden, wo es insbesondere bei der
Berechnung der Tensor-Koeffizientenfunktionen einen betriichtlichen Uber-
lapp von Zwischenergebnissen gibt.

5 Historische Entwicklung

5.1 FeynArts

FeynArts hat die lingste Geschichte der drei Programme und geht auf die
Wiirzburger Arbeitsgruppe um M. Bohm zuriick. H. Eck und J. Kiiblbeck
entwickelten 1990 FeynArts 1.0 als einen Diagrammgenerator fiir das elek-
troschwache Standardmodell [7]. Wesentlich verallgemeinert wurde Feyn-
Arts 1995 durch neue Konzepte, die in die Version 2 einflossen [8]. So wur-
de z.B. speziell fiir FeynArts der ,,Fermion-Flip-Algorithmus* entwickelt [9],
der es erlaubt, Diagramme fiir Theorien zu erzeugen, die fermionzahlverlet-
zende Kopplungen besitzen, dazu gehoren insbesondere supersymmetrische
Modelle. Danach verlieBen Eck und Kiiblbeck jedoch die Physik und die
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Entwicklung von FeynArts wurde erst 1998 von T. Hahn weitergefiihrt. Die
vorldufig letzten groBen Anderungen waren die grundlegende Umgestaltung
des Grafikteils [10], die 2000 von Hahn im Rahmen eines Forschungsaufent-
haltes bei Wolfram Research vorgenommen wurde und mit der die fast immer
anfallende Nachbearbeitung der Diagramme fiir die Publikation entscheidend
vereinfacht wurde, sowie die Fertigstellung des MSSM-Model-Files [11].

FeynArts ist fast vollstindig in Mathematica geschrieben, nur der Topo-
logieeditor ist in Java kodiert. Im Vergleich zu anderen Diagrammgenerato-
ren besitzt FeynArts ausgezeichnete Grafikfahigkeiten sowie fiir die Behand-
lung grundlegender Fragen der Quantenfeldtheorie niitzliche Features wie
z.B. Hintergrundfelder und Mischungspropagatoren.

FeynArts ist ein Open-Source-Programm und auf http://www.feynarts.de
erhiltlich. Derzeit wird das Programm 150 bis 200 mal im Monat herunter-
geladen (Anzahl der erfolgreichen Downloads des .tar.gz-Files).

5.2 FormCalc

Im Rahmen seiner Diplomarbeit 1994 [12] war T. Hahn damit konfrontiert,
Box-Diagramme mit vier internen Fermionlinien auszurechnen. Das damals
fiir die Berechnung der mit FeynArts erzeugten Feynman-Diagramme benutz-
te Programm FeynCalc [13] brauchte fiir ein einziges solches Diagramm ca.
eine Woche auf der schnellsten Workstation im Wiirzburger Rechenzentrum.
Als sich hinterher auch noch herausstellte, dal aufgrund eines ungiiltig ge-
setzten Flags in FeynCalc das Ergebnis Makulatur war, entwickelte Hahn in
zwei Wochen einen rohen Prototypen des Programms, das heute FormCalc
heifit. Wichtigste Neuerung war, daf fiir die langwierigen Vereinfachungen
(besonders die fermionischen Spuren) die Amplitude an FORM geschickt
und das Ergebnis hinterher wieder in Mathematica eingelesen wurde. Die-
ses Programm brauchte einige Minuten fiir die besagten Box-Diagramme und
schlug somit selbst einschlieBlich seiner Entwicklungszeit FeynCalc um Lin-
gen. Weil es FORM benutzte, aber im Prinzip dasselbe tat wie FeynCalc,
erhielt es den Namen FormCalc.

Nach einiger Weiterentwicklung im Zuge der Doktorarbeit wurde das Pro-
gramm 1996 im Internet zur Verfiigung gestellt. 1998 wurde in Kollaboration
mit der Universitit Granada das Verfahren der differentiellen Renormierung
in FormCalc eingebaut [14]. Damit war FormCalc in der Lage, auch super-
symmetrische Amplituden zu berechnen, fiir die das iibliche Verfahren der
dimensionalen Regularisierung nicht anwendbar ist. Weitere Verbesserungen
betrafen vor allem die Code-Generierung, wodurch die Rechnung erheblich
stirker als zuvor automatisiert werden konnte.

Die jiingste, erst kiirzlich fertiggestellte Neuerung ist der Einbau des Weyl—
van-der-Waerden-Formalismus [15]. Mit diesem kann die Berechnung von
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Diagrammen mit dueren Fermionen drastisch vereinfacht werden. Es ist un-
schwer, Fille zu finden, in denen der herkommliche Formalismus mit He-
lizitdtsamplituden schon fiir einen 2 — 3-Prozef in die Knie geht, weil
z.B. 20000 Helizitits-Matrixelemente berechnet werden miilten. Auflerdem
erhilt man mit dem Weyl-van-der-Waerden-Formalismus polarisierte Wir-
kungsquerschnitte, also die ganze Spin-Physik, ohne zusitzlichen Rechen-
aufwand.

FormCalc ist in Mathematica, FORM, C und Fortran geschrieben und be-
nutzt das standardisierte MathLink-Protokoll, um Daten zwischen Mathema-
tica und FORM auszutauschen. Wie FeynArts ist auch FormCalc ein Open-
Source-Programm und steht auf der Webseite http://www.feynarts.de/form-
calc zur Verfiigung.

5.3 LoopTools

Die von G.J. van Oldenborgh geschriebene FF-Bibliothek war lange Zeit die
einzige offentlich verfiigbare Implementierung der Ein-Schleifen-Integrale.
Allerdings enthielt die Bibliothek neben den skalaren Integralen nur weni-
ge Tensorkoeffizienten. Die Routinen erforderten aulerdem eine umfangrei-
che Deklaration der Arrays, in denen die Parameter iibergeben wurden, man
konnte also nicht ,,mal schnell* eine Funktion aufrufen.

Fiir die automatische Fortran-Code-Generierung durch FormCalc war dies
ein Hindernis, so daf3 T. Hahn 1995 zunichst die Tensorkoeffizienten hinzu-
fiigte und sukzessive auch das Interface verbesserte. Spiter folgte ein auto-
conf-artiges configure-Skript, mit dem die zuvor zahlreichen Probleme
bei der Kompilierung auf unterschiedlichen Plattformen weitgehend elimi-
niert wurden. (So kostete die Installation von LoopTools auf dem AIX-Sy-
stem des MPI fiir Physik 1997 noch fast einen ganzen Tag.)

Eine besonders wichtige Erweiterung, die derzeit in Arbeit ist, ist der Ein-
bau der Fiinf-Punkt-Funktion, die fiir 2 — 3-Prozesse bendétigt wird. Eine
numerisch stabile Version dieser Funktion existiert bereits [16] und mul3 nur
noch implementiert und getestet werden.

Die LoopTools-Bibliothek ist in Fortran geschrieben. Lediglich die fiir
den internen Cache-Mechanismus nétige dynamische Speicherallozierung ist
(mit einigen Tricks) durch eine C-Funktion geldst, da Fortran 77 nur statische
Arrays kennt. Das C++-Interface besteht aus einer einzigen Header-Datei,
die nur ein paar Inline-Funktionen als ,,Wrapper* fiir die Bibliotheksroutinen
enthdlt. Das Mathematica-Interface ist ein C-Programm, das das MathLink-
Protokoll zur Interaktion mit Mathematica benutzt. LoopTools ist ebenfalls
ein Open-Source-Programm und steht auf http://www.feynarts.de/looptools
zur Verfligung.
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6 Anwendungen

6.1 Rechnungen im Standardmodell

Mit der jiingsten Generation von Beschleunigern, besonders seit LEP, liegen
fiir viele Observable sehr genaue experimentelle Daten vor. Das hat natiirlich
auch den Bedarf an theoretischer Genauigkeit gesteigert, so dal Ein-Schlei-
fen-Rechnungen im Standardmodell heute in vielen Fillen eine Minimalan-
forderung darstellen.

Ein-Schleifen-Rechnungen im Standardmodell umfassen typischerweise
einige 10 bis 100 Diagramme, was bei Rechnung mit Hand einem Aufwand
von einem bis wenigen Mannjahren entspricht, also ein typisches Diplom-
oder Doktorarbeitsthema. Es gibt aber auch Beispiele, die ohne den Ein-
satz von automatisierten Programmen kaum denkbar sind, z.B. die elastische
W-W-Streuung, wo auf Ein-Schleifen-Niveau ca. 1000 Feynman-Diagram-
me beitragen [17].

Fiir das Standardmodell existiert eine grole Zahl von Originalarbeiten, die
ganz oder teilweise mit FeynArts, FormCalc und LoopTools berechnet wurden
[18]. Natiirlich wire es vermessen, bei der Komplexitit dieser Programme
davon auszugehen, dal} selbige ,.fehlerfrei* sind, daher wurden und werden
zur Kontrolle auch viele bekannte Ergebnisse nachgerechnet (siehe z.B. [19])
und die Programme ggf. nachgebessert. Generell ist die Zuverlassigkeit der
Ergebnisse aber sehr hoch, so wurden auch schon des 6fteren Fehler in bereits
publizierten Rechnungen gefunden, etwa in [20].

6.2 Rechnungen im Minimalen Supersymmetrischen Standard-
modell

Das Minimale Supersymmetrische Standardmodell (MSSM) hat ein mehr als
doppelt so groB3es Teilchenspektrum wie das Standardmodell, da abgesehen
von einem groBeren Higgs-Sektor die Supersymmetrie zu jedem Teilchen
einen sog. Superpartner postuliert.

Als Folge des groBen Teilchenspektrums besitzt das MSSM iiber 400
Kopplungen, was Rechnungen mit Hand im allgemeinen Fall, d.h. ohne daf3
man nur bestimmte Sektoren des MSSM betrachtet (oder andere Nidherungen
macht), sehr mithsam macht. Daher war die Veroffentlichung des FeynArts-
Model-Files fiir das MSSM 2001 [11] ein wichtiger Schritt. Der aufwen-
digste Teil dabei war der Test moglichst aller Sektoren des Modells durch
Reproduktion diverser Ergebnisse aus der Literatur, um auch im MSSM die
gleiche Zuverlissigkeit wie im Standardmodell zu gewihrleisten.

Experimentell wurden noch keine Superpartner-Teilchen nachgewiesen.
Gerade aus diesem Grund ist aber die Betrachtung der MSSM-Schleifenkor-
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rekturen zu bekannten Prozessen besonders wichtig, da iiber diese die Effekte
der neuen Teilchen in Prisizionsobservablen eingehen und so Einschrankun-
gen an die Parameter des MSSM abgeleitet oder sogar indirekte Hinweise auf
Superpartner gefunden werden kdnnen.
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ESPResSo -

An Extensible Simulation Package
for Research on Soft Matter Systems

A. Arnold, B.A. Mann, H.J. Limbach, C. Holm
Max-Planck-Institut fiir Polymerforschung, Mainz

Abstract

We describe a newly written program package, ESPResSo, that was designed to perform nu-
merical MD/MC simulations for a broad class of soft matter systems in a parallel computing
environment, and we present a few examples of ongoing research projects using ESPResSo.
Our main concept in developing ESPResSo was to provide an easy to use simulation tool
which serves at the same time as a research platform capable of rapidly incorporating the latest
algorithmic developments in the field of soft matter sciences. The strength of the present ver-
sion lies in its efficient treatment of long range interactions in various geometries in a parallel
computing environment. The source code relies on simple ANSI-C, is Tcl-script driven, and
possesses easily modifiable interfaces, for example for real-time visualizations, or a graphical
interface. The distribution of the source code adheres to the open source standards. In this way
we hope to make our own scientific achievements more rapidly available to a broader research
community and, vice versa, also stimulate in this way researchers all over the world to contribute
to our project.

1 Introduction

Soft condensed matter (or soft matter, as it is often called) is a term for ma-
terials in states of matter that are neither simple liquids nor hard solids of the
type studied, for example, in solid state physics. Many such materials are
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familiar from everyday life - glues, paints, soaps, baby diapers - while others
are important in industrial processes, such as polymer melts that are molded
and extruded to form plastics [1]. Biological materials are mainly made out
of soft matter as well - membranes, actin filaments, DNA, RNA, and pro-
teins belong to this class. Furthermore, most of the food we digest is soft
matter. All these materials share the importance of length scales intermediate
between atomic and macroscopic scales: The relevant range for soft matter
lies between nanometers and micrometers. Examples are polymers, colloids,
liquid crystals, glasses, and dipolar fluids. Typical energies between differ-
ent structures are similar to thermal energies. Hence, Brownian motion or
thermal fluctuations play a prominent role. Another key feature of soft mat-
ter systems is their propensity to self-assemble. Again the energy differences
during this process are small such that many neighboring states are normally
accessible through fluctuations. This often results in complex phase behav-
iors yielding a rich variety of accessible structures. Order does not necessarily
arise on the single molecule level, but quite commonly exhibits a multitude
of hierarchically ordered structures of sometimes tremendous intricacy and
complexity. Most of the biological systems are usually not even in equilib-
rium but evolve among switchable steady states.

Given this wide field, research on soft material substances often acquires
knowledge from different areas of research, such as physics, chemistry, and
biology, such that a high level of interdisciplinarity may be required for cer-
tain scientific questions.

In the past, our research has mainly focused on the study of charged poly-
mers (polyelectrolytes) and charged colloids which serve as important sub-
stances for many technical applications. Charged systems also occur in bio-
logical environments (since most biological matter is charged), and modelling
explicit water molecules requires partial charges as well. The simulation of
these systems is not straightforward and very time consuming [2], thus the
production of single data points could take weeks or even months for complex
biomolecular problems. We have therefore developed a number of algorithms
which yield fast expressions for the energy and forces of fully or partially pe-
riodic systems [3, 4, 5]. As these algorithms are normally quite complex,
studying new problems in soft matter electrostatics commonly meant having
to adapt that code into new programs. This required considerable amounts
of valuable research time on coding issues with the final result of a highly
specialized research tool. In this way, human resources were kept away from
algorithmic improvements and scientific applications using them.

Looking at other available simulation packages, e.g BALL [6], GISMOS [7],
GROMOS [8], LAMMPS [9], NAMD [10], polyMD [11], and OCTA [12], we
did not find a single package which met all our needs. It should be easy
to use, but scientificly sound; it should grant experts access to state-of-the-
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Specify the

problem
interpretation
of results
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Fig. 1: A typical research problem and the part where ESPResSo comes into play.

art techniques, but enable beginners to become experts as well, not being
limited to using a “black box”, therefore it should be well-documented pro-
viding exhaustive informations. All these are as indispensable for successful
scientific work as knowledge of how to specify a simulation problem and
how to interpret its results, knowledge no program can ever compensate for.
This led us to design a newly structured program for research on soft mat-
ter, which we called an Extensible Simulation Package for Research on Soft
Matter Systems, ESPResSo for short. The program enables us to study
soft matter model systems via Molecular dynamics (MD) and Monte Carlo
(MC) algorithms, with particular emphasis on extensibility for new, highly
complex force/energy algorithms. Since the problems under investigation
are located along scientific frontiers, meaning they are complex and com-
putationally time-consuming, the program is parallizable, fast, accurate, and
easily modifiable. Here, we present the first version of this ESPResSo-
package. Updates and more documentation can be found on the web page
http://www.espresso.mpg.de/. The distribution of the source code adheres
to the open source standards and can be requested from the authors. By this
we hope to ignite the further development of our code into a valuable research
tool for the soft matter community.

2 Design

The ESPResSo design was developed to specifically serve the demands of
a computational research group whose typical scientific projects can usually
be structured into several stages such as those depicted in Fig. 1.

While most simulation programs focus only on single aspects of such a
project, ESPResSo is suited to help researchers in the whole process be-
tween the specification of a scientific problem and the interpretation of the
results. Since ESPResSo offers a variety of methods and combines the
knowledge of tens of man-years of research expertise on soft matter it helps
newcomers to get into simulation techniques and to choose the right method
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for a certain problem. On the other hand experts can easily implement their
own special routines into the framework of ESPResSo, enabling them to
explore paths outside the scope of their own programs. Often new problems
require new algorithmic solutions. ESPResS0 helps the user implement new
features due to its hierarchical structure, its modularity, its general data struc-
tures and its well-defined interfaces. A test-suite which is part of ESPResSo
helps in checking if new features reproduce well-known physical properties
of model systems. The hierarchical structure is well-suited for running sim-
ulations without required knowledge of the whole program package. The
whole system setup is contained within a Tcl [13] script. A large number of
sample scripts for various simulation problems help in developing new ap-
plications. Inside a simulation script, one can handle the entire simulation
process from the specification of a system, the actual simulation, its analysis
and the graphical output of the results. We want to emphasize our goal to
design a practical research tool which is easy to learn, use and extend. This is
especially supported by ESPResSo being a team project, since this ensures
that every part of the code has to pass through a discussion process provoking
a simple, effective and understandable implementation.

A difficult task in the design process arises from conflicts between different
requirements regarding the simultaneous optimization of several aspects. In
order to ensure that new researchers do not need too much time to learn how
ESPResSo works, the code has to be kept simple, which is sometimes in
contradiction to code optimization for computational speed. Aiming at being
able to handle a wide variety of topics instead of solving only specific prob-
lems leads to the same challenge of countering the code’s tendency towards
more complexity, hence less understandability.

HIERARCHICAL PROGRAM STRUCTURE: ESPResSo is built up using
three hierarchical program levels. In Fig. 2, we show a sketch of this hier-
archical program structure together with the program modules belonging to
each level and their scope. The steering of the program is done on a script
language level. All tasks are implemented as extensions to the script lan-
guage dealing with input and output of data, setting of particle properties,
interactions and parameters, and performing the integration and analysis of a
given system. The basic simulation level is implemented in C. It contains the
integrator as well as the calculation of fundamental observables like forces,
torques, energies, pressure and temperature. These first two levels build up
the part that is common to all investigated problems. Consequently, it is the
part which should be known by a researcher using ESPResSo. Therefore,
special emphasis was placed on simplicity and readability. The third level,
also implemented in C, ensures the speed, efficiency and great generality of
ESPResSo. This includes algorithms to accelerate the force and energy
calculations used by the integrator as well as special algorithms to treat long-
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range interactions (see Section 3.3). Parallelization of all time-critical parts
of the program enable efficient large scale simulations (see the benchmarks
in Section 3.4). On this level, one also finds all implemented potentials for
the particle interactions, and interfaces to other programs like VMD [14] for
on-the-fly visualization of simulations.

Level Module Content

Fig. 2: Program hierarchy and modular structure of ESPResSo.

MODULARITY: The hierarchical structure is accomplished by splitting the
levels into different modules, which subdivides the otherwise large program
package into manageable pieces. This is particularly important for the aspect
of extensibility because it ensures that an extension does not affect the entire
package but rather one or few modules. It also allows the user to concen-
trate on understanding those modules and their scientific background that are
actually used for the particular problem under investigation.

GENERALITY: To serve as a general research tool, ESPResS0 needs to
be able to handle a wide variety of problems. This includes different topolo-
gies, short- and long-range interactions, external fields, constraints, different
boundary conditions, and various methods like MD or MC. In order to treat
large scale simulations, it is also necessary to have an efficient parallelized
code which runs on multiple CPU architectures. Since one of the main fo-
cuses of ESPResSo is long range interactions, we describe the implemented
methods in more detail in Section 3, while abilities of the parallelization is
demonstrated in 3.4.
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The connectivity between the particles, which in other programs is of-
ten stored as a global topology, is incorporated locally at every particle. In
this way the user is free specifying the needed topologies on the script level
(see Section 4 for examples),
and the connectivity informa-
tion can easily be parallelized.
Since this allows for any kind
of topology, additional con-
cepts such as molecules, poly-
mer chains or proteins are un-
necessary. There are however
a number of predefined sam-
ple scripts and auxiliary rou-
tines provided for the user’s
convenience which set up poly-
mer chains, simple model net-
works, or more complex struc-
tures such as fullerenes (see
Fig. 3: Snapshot of a fullerene molecule (C60) builr  Fig. 3), representing tutorial-
by ESPResSo. like shortcuts that facilitate writ-

ing new task scripts. Since both
single molecule experiments as well as investigations of confined systems
have gained increasing importance over the last years, ESPResSo also con-
tains features to handle corresponding simulations. The program is able to
deal with periodic boundary conditions in any combination of up to three
spatial directions.

When simulating bulk systems, e.g. a small representative portion of a
solution, normally periodic boundary conditions are applied to avoid bound-
ary effects. For simulations of thin films or surface effects, periodic bound-
ary conditions in all three spatial dimensions do no make sense. The proper
boundary conditions are periodic only in two out of the three spatial dimen-
sions, while the remaining coordinate has a non priodic boundary condition.
If rods are the object of interest (see e.g. Section 4.3), only one coordinate is
left to have periodic boundary conditions. The complexity of an electrostatic
simulation dramatically changes with different boundary conditions (see Sec-
tion 3.3).

In the case of a thin film, the particles have to be confined to a fixed layer.
For this ESPResSo supports constraints like walls, cylinders or spheres. It
is also possible to simulate particles subject to external forces or fields. In
order to cover a wide range of thermodynamic environments one can switch
between simulating different thermodynamic ensembles like the NVE-, NVT-
or NPT-ensemble.
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DOCUMENTATION: ESPResSo is not intended to be a black-box-like
package. Users are encouraged to try to understand its algorithms and rou-
tines, developers are strongly advised to do so before extending it. In or-
der to preserve the knowledge about algorithms and their physical/chemical
background, it is important to provide and maintain a well structured docu-
mentation. This is mainly done inside the code itself and then extracted and
processed by doc++ [15] into a user-friendly html-manual mainly adress-
ing specific code-/function-/procedure-related issues. It is supplemented by a
stand-alone documentation on general topics such as the usage of the script
commands, the general organization of the data structures, communication
schemes, and analysis options. The code development itself is done in a CVS-
environment (concurrent version system [16]). This helps to keep track of all
changes, and provides information on what, when and by whom something
has changed in the program.

PROGRAMMING ENVIRONMENT: We decided to use C as the only pro-
gramming language in order to keep the code as simple to read as possible.
Compared to C++ we think that this is still the language of choice in a re-
search environment since it is easier to learn for people having a natural sci-
ence rather than a computer science background. At the same time it provides
all necessary features to create a modular and concise program package.

We use Tcl [13] as the script language since it contains a simple and effec-
tive interface to build C programs as extensions to the script language itself.
Syntax and programming style are similar to C which makes it easy to learn.
Another advantage is that there exist a large variety of extensions for Tcl.
For example, with the Tk-extension it is straight forward to build a graphical
user interface. This has already been done for presentation purposes. Tcl also
gives us the possibility to easily create interfaces to other programs. Exam-
ples are gnuplot or xmgr for graphical processing of analysis results.

Another important choice was the type of communication for the paral-
lelization. We decided on using MPI, as it is available for virtually all archi-
tectures; unlike e.g. OpenMP which requires shared memory, MPI also works
on distributed memory computers such as Linux clusters. ESPResSo re-
lies on the fact that MPl-implementations are normally well optimized for the
underlying architecture.

EASE OF USE: For the ESPResSo-package to live up to its full potential,
a straightforward and simple access is mandatory. The layered hierarchi-
cal program structure allows the user to focus on any aspect of his scientific
simulation. This can be for example modeling complex physical systems
with particle insertion/deletion, pressure-dependent volume changes and/or
varying constraints can be done by simply creating a corresponding script
file which specifies the basic rules of such a setup. Or it can be tweaking
computational routines to utmost performance can be achieved by simply
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adding/modifying/replacing one single module of ESPResSo, immediately
granting other users access to that improvement.

To demonstrate this simplicity, we give the complete script file required for
the real simulation of a full 3D liquid Lennard-Jones system near the triple
point with ESPResSo0 — just the following few lines:

# Sample Script:

# Lennard-Jones system near the triple point

# Create 32000 random particles at a density

# of 0.8442 in a cubic box.

setmd box_ 1 33.5919 33.5919 33.5919

for {set i 0} { $i < 32000 } {incr i} {
set position_x [expr 33.5919*[t_random] ]
set position_y [expr 33.5919*[t_random] ]
set position_z [expr 33.5919* [t_random] ]
part $i position S$position_x Sposition_y \

Sposition_z type O

# Create Lennard-Jones-interactions
inter 0 0 lennard-jones 1.0 1.0 2.5 0 O

# Initializing a Langevin thermostat
setmd temperature 0.72
setmd gamma 1.0

# Integrate 1000 steps in a NVT-ensemble

setmd time_step 0.01

integrate 1000

This script, complemented by an initial warm-up period to prevent two of the
LJ-particles to have their random starting positions too close to one another, is
essentially the one which was used in Section 3.4 for creating the equilibrated
starting configuration of the first benchmark scenario.

3 Included Algorithms
In the following we want to give a brief overview on the algorithms and data

organization used in ESPResS0. The handling of the electrostatic interac-
tion, one of the special features of our program, is described in more detail.

3.1 Data structure and link cells

The calculation of pairwise forces requires a loop over all possible particle
pairs, which is computationally inefficient (scaling as O(N?), where N =
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amount of particles). In the case of short-ranged forces, i.e. forces which
only have a non-neglegible contribution within a range of less than 10% of
the simulation box, a standard way to overcome this is the link cell algorithm.
The particles are sorted into cells which are about as large as the largest range
of a short-ranged interaction. Then short-ranged interactions only occur be-
tween particles in adjacent cells. For systems of equal density the number
of particles in these cells is constant, therefore reducing the computational
order to O(N). Distributing the particles according to their spatial position,
known as domain decomposition, is also a standard method for parallelization
in multiprocessor environments. Therefore, our way of storing the data also
supports the parallelization of the code.

Standard MD/MC programs store the particle information consecutively
and the cell information as a pointer array into the particle data. This re-
sults in less readable code since many indirect accesses to the particles oc-
cur. Therefore we decided to store the particle information split up into the
cells, resulting in a much more elegant integrator code. A nice side effect is
that the particle information is now also stored in the same order as it will be
used during the simulation which linearizes memory accesses. Since memory
bandwidth is the bottle neck on modern computer systems, this also results in
a major speedup.

3.2 MD integrator

For MD simulations ESPResSo0 has a velocity Verlet integrator with a Lan-
gevin thermostat. The calculation of the short-ranged forces is done using
the link cell structure and Verlet lists. For each pair of neighboring cells,
ESPResSo maintains the Verlet list, that is a list of all the particle pairs
which currently interact and pairs that will interact if they approach “just a
bit” further. ESPResS0 has to calculate only the interactions for these pairs
as long as none of them have moved too far, which may take more than ten
time steps. Bonded interactions such as spring forces are stored with one of
the particles involved and calculated in a simple loop. Long-ranged inter-
actions like the electrostatic potential need a much more sophisticated treat-
ment, which is explained below. Particles that are not rotationally invariant
are treated using a quaternion representation.

3.3 Electrostatics —
P3M, MMM2D, ELC and MMM 1D

The most time consuming part of a simulation incorporating charged parti-
cles is the calculation of the electrostatic interaction. This is due to the fact
that the electrostatic interaction is long-ranged, so that interactions are neg-
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ligible only in a range larger than several box lengths in general. In periodic
boundary conditions on reasonably sized systems this problem is therefore
only tractable by applying non-trivial mathematics. The first algorithm to
treat this problem efficiently goes back to Ewald in 1921, whose algorithm
had an order of O(N?3/2) and is still in use today. The potential is artifi-
cially split up into a short-ranged part and a long—ranged, smooth part, which
is handled in Fourier space. ESPResSo0 uses an extension of this method
called P3M! [17]. This method uses a grid approximation for the particle
distribution in the Fourier space part, allowing the use of fast fourier trans-
formations (FFT) which facilitates the overall computational time to drop to
O(N log N). ESPResSo uses FFTW which is a fast and portable public do-
main FFT [18]. The overall performance of all Ewald-type methods critically
depends on the choice for the splitting point of the potential. As P3M fea-
tures additional parameters such as the grid size, choosing the optimal ones
is even more demanding. ESPResSo0 helps the user by providing an auto-
matic tuning tool which determines the optimal P3M parameter set [3] for a
given system and a certain desired accuracy, e.g. 107%: inter coulomb
<bjerrum_length> p3m tune accuracy le-4

If the system is replicated periodically in fewer than three dimensions, the
situation is even worse due to the broken symmetry. Here, the classical Ewald
approach leads to an O(N?) algorithm. ESPResSo0 here uses variants of the
MMM [19] approach, MMM2D [4] and MMMI1D [20], to tackle the 2D and
1D periodic cases for small numbers of particles. For large numbers of par-
ticles in two—dimensionally replicated systems, another method, called ELC?
[5], is implemented that allows a computational effort similar to P3M. These
methods are current developments and ESPResSo is the first simulation tool
to use them. In the following we shortly describe the algorithms and their
range of application.

MMM2D, obtains high accuracy and is very fast for small number of par-
ticles, but has a computational order of O(N®/3) and therefore is for larger
numbers of particles much slower than P3M. It allows for very simple error
estimates and is easy to tune for optimal speed. MMM2D uses two differ-
ent formulas to calculate the electrostatic interaction. The first one converges
very fast, but only if the particles are sufficiently far away. The second for-
mula also works for particles close together, but is much more time consum-
ing. The only tuneable parameter is the distance at which the use of the two
formulas is switched.

ELC is a completely different approach. The interaction is first calculated
using P3M with full periodic boundary conditions, but in a second step the

'P3M: Particle-particle particle-mesh method
2ELC: Electrostatic layer correction
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contribution of the additional image layers is subtracted again. To calculate
this contribution parts of the MMM2D theory can be used, leading to a very
fast linear algorithm for this calculation. The overall computational time is
dominated by the P3M algorithm.

For the one—dimensional case MMM2D is easily modified to the MMM 1D
algorithm. It has a very unfavorable computational time scaling of O(N?),
but still is as accurate as MMM?2D, and for small numbers of particles very
fast. An application of this algorithm is described in Section 4.3.

3.4 Benchmarks

Even though the primary goals of the ESPResSo-package are accessibility,
modularity, flexibility, and extensibility, its secondary -and equally important-
objective accounts for the scientific realities of tight schedules and time con-
straints: Being as optimized for speed as possible without sacrificing its
primary benefits. Considering the timings we measured, the state-of-the-
art algorithms adapted (see previous sections) meet both demands extremely
well. The direct comparison of benchmark timings of some test scenarios
to those of the corresponding highly specialized codes show that despite the
unique nature of ESPResSo representing a very general multi-purpose tool,
it still performs similarly (e.g. compared to LAMMPS, but around 1.5 times
slower than polyMD) with a firm robustness among different architectures
(e.g. AMD, Intel, IBM, Alpha), compilers (e.g. mpicci, mpich, mpicc), and
operating systems (e.g. AIX, OSFI, Linux). Since to our knowledge there
is no available program package similar in scope and design of ESPResSo,
it is therefore safe to conclude that balancing both aforementioned goals has
succeeded. Any potential difference in performance is negligible compared
to either the time scales needed for algorithmical implementation of even
faster code (particularly when recalling ESPResS0’s mission to remain un-
derstandable, prohibiting most low-level trickery), or to the advancements
in hardware technology, or simply overcompensated for by ESPResSo0’s
design-inherent advantages since e.g. the modularity allows to account for
any algorithmical improvements which might arise in the future.

Besides absolute speed, another fundamental feature of our scientific simu-
lation system is its intrinsic parallelizability, which also distinguishes it from
other projects: In ESPResSo the choices of data structures and algorithm
implementations were optimized in this respect, so that the program is now
able to use any reasonable number of processors on any computer system
supporting one of the available MPl-environments. To demonstrate the par-
allel performance, Table 1 presents benchmarking results for three standard
test scenarios. Note that the charged systems used the P3M routines, which is
why for N = 4 the scaled dense ES-system seems more efficient compared
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to the scaled case at N = 2 or to the fixed system because the performance
critically depends on the choice of P3M-parameters whose optimizability in
turn depends on the number of particles and processors (see Section 3.3).

4 Applications

In this section, we will present a few ongoing research projects dealing with
charged polymers and their counterions in different solvents and topologies;
extensions to charged membranes and colloids are straightforward, as are
those to neutral systems. Polyelectrolytes are polymers which have the abil-
ity to dissociate charges in polar solvents which results in charged polymer
chains (macroions) and mobile counterions. They represent a broad and in-
teresting class of soft matter [21, 22] that command increasing attention in
the scientific community. In technical applications polyelectrolytes are used
as viscosity modifiers, precipitating agents, and superabsorbers. A thorough
understanding of charged soft matter has also become of great interest in bio-
chemistry and molecular biology.

4.1 Polyelectrolyte bundles

Polyelectrolyte bundles can be used as templates to build up nanowires or
model systems to study DNA agglomerates. Although applications are al-
ready in an advanced state, our understanding of the polyelectrolyte bundling
processes is still quite limited. With the help of molecular dynamics simu-

# of Processors N 1 2 4 8 16 32
LJ-system (fixed) 1.00 | 0.99 | 0.97 | 0.96 | 0.92 | 0.84
LJ-system (scaled) | 1.00 | 0.99 | 0.97 | 0.92 | 0.89 | 0.82
dense ES (fixed) 1.00 | 0.97 | 0.95 | 0.88 | 0.81 | 0.69
dense ES (scaled) 1.00 | 0.96 | 0.99 | 0.76 | 0.74 | 0.50
dilute ES (fixed) 1.00 | 0.87 | 0.83 | 0.73 | 0.60 | 0.46
dilute ES (scaled) | 1.00 | 0.86 | 0.68 | 0.66 | 0.61 | 0.35

Tab. 1: Efficiency of the ESPResS0-code on an IBM Regatta H Server (eServer 690 Modell
681 with 32 Power4 Processors at 1.3 GHz each ) for three different systems: A neutral LJ fluid
composed of either 32000 - N (scaled) or 32000 particles (fixed) at a density of 0.8442 in a
NVE-ensemble; a dense electrolyte system with either 2000 - N (scaled) or 8000 particles (fixed)
at a density of 0.07, friction and temperature of 1.0, Bjerrum length of 20.0 in a NVT-ensemble;
a dilute electrolyte system which differs only in density (1 - 10~%), Bjerrum length (2.0), and
fixed size (16000 particles). After warm-up and equilibration period the execution time T for

integrating 1000 time steps (integrate 1000) was measured and compared between using
T, /N

one and N nodes: For a fixed-size system the efficiency reads TN

, for scaled-size 77:—1 .
N
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lations, we investigate the stability of such bundles as a function of (i) the
strength of the electrostatic interaction, (ii) the stiffness of the polyelectrolyte
backbone, (iii) the solvent quality, and (iv) the chain length. Simulations
are performed in a spherical simulation cell. This is possible in ESPResSo
using non-periodic boundary conditions together with a spherical constraint.
The concept to store the connectivity between the particles locally at each
atom enables us to easily create the needed topology of the chains, namely
a stiff backbone chain with a flexible hair attached at every third monomer.
In Fig. 4, a snapshot of a polyelectrolyte bundle is shown. The simulation
started as a bundle made of 8 polyelectrolyte chains. During the simulation,
two of the chains split off the bundle and a bundle with 6 chains remains. This
shows that we can in fact explain a thermodynamically limited finite bundle
size with a relatively simple model.

4.2  Hydrogels - Polyelectrolyte Networks

Probably one of the most computationally demanding tasks on the coarse-
grained level of bead-spring polymers is the simulation of a network of poly-
electrolytes. Not only do the aforementioned long-range interactions between
charged monomer units require sophisticated techniques, the cross-linked net-
work bonds themselves heavily increase the amount of short-ranged excluded
volume and bonding potentials to be considered while at the same time dimin-
ishing the effectiveness of cut-offs for saving computation time. Nevertheless,
the wide applicability of such hydrogels for chemical, pharmaceutical, medi-
cal, biological, agricultural, environmental, and industrial settings more than
justifies any efforts towards a deeper understanding of their fascinating and
important properties.

With the ESPResSo package one can go easily from single chains to a
network on the script level. A simple

Fig. 4: Snapshot of a polyelec-
trolyte bundle: A bundle at the
edge of stability. One chain has al-
ready fallen off and another chain
is splitting from the bundle. Colors:
neutral backbone - red, charged
backbone - blue, hydrophobic side
chains - orange, counterions - gray
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for {set 1 0} {S1i < Snumber_of_ chains} {

part $start($i) bond $fene Spartnerl ($1)

part $Send(S$i) bond $fene S$Spartner2 ($i)
}
in the Tcl-script is enough to crosslink a system of charged chains to become
a hydrogel, while the remaining segments of script and code do not need to
be changed at all.

Naturally, the behavior of such systems depends both on the environment,
i.e. the strengths of electrostatic and bonding interactions as well as the pres-
ence and valency of eventual salt molecules, and on the topology of the net-
work which may range from a well-ordered model network (diamond, star
polymer) to randomly crosslinked polyelectrolytes.

Using ESPResSo, we find that the swelling behavior of polyelectrolyte
gels does not only beat comparable neutral networks by at least an order of
magnitude, showing unprecedented abilities of absorbing the surrounding sol-
vent by growing several times its own volume, but it also turned out that a
simple scaling argument seemed to be sufficient to describe these complex
interplays between (partially screened) long-range interactions, short-range
attraction and excluded volume effects by balancing the osmotic pressure of
the counterions inside the gel due to electrostatic repulsion and the elastic
contribution of the stretched chains [23, 24].

4.3 Stiff DNA-like polymers

Experiments have shown that DNA exhibits attractive interactions in the pres-
ence of multivalent counterions. This is believed to be the reason for the
compactification of DNA, for example inside viral capsids. Computer sim-
ulations of polyelectrolytes in the presence of multivalent counterions also
show an attractive force between the (like—charged) polymers.

To understand the effects in more detail, we model the DNA strands by two
infinitely long charged rods. The system is neutralized by multivalent coun-
terions. In such a system, mean field theories like Poisson—-Boltzmann do
not predict any attraction of the rods. Generally, one knows that correlations
between the counterions, ignored in the mean—field treatment, are responsi-
ble for the observed rod-rod attractions. We use ESPResSo to study this
system, using periodic boundary conditions only along the rods. The electro-
static interaction is calculated using MMMI1D.

A first goal was to extend some results from previous simulations [25],
which studied the effect of the electrostatic interaction by increasing the Bjer-
rum length?. The study showed that even for moderate Bjerrum lengths the
behavior is dominated by the low temperature behavior, but depends heavily

3The Bjerrum length is the distance at which two charges interact with an energy of 1kgT
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on other parameters like the rod radius and its line charge density. If one
splits up the net force on the rods into the contributions from the electrostatic
interaction and from the excluded volume interaction, it was found that both
forces can be repulsive or attractive at large Bjerrum lengths, depending on
the other parameters. We performed a number of simulations at 7' = 0 vary-
ing both rod radius and line charge density, showing an unexpectedly rich
phase diagram (Fig. 5).

O
System 1: System 2:
Trod — 10‘, ‘:. Trod — 40‘,
_ - A = 6.5
A = 033/c -4 /o
@

Fig. 5: At zero temperature, the ions form a crystal. For System 1 all counterions are trapped in
the plane spanned by the rods, for System 2 a quasi hexagonal pattern is formed. The systems
have different rod radii ,.,q and line charge densities \. Especially for System 1 the patterns
show defects which are due to finite size effects and the kinetics of the freezing process.

Recent analytical predictions based on a strong coupling theory regarding
the equilibrium distance between two charged rods were easily verified due
to the flexibility of ESPResSo0 [26]. This distance was determined using a
simple bisection algorithm combined with an interpolation, something which
is easily implemented in Tcl and could therefore be done in the simulation
script, while most other simulation packages would not have allowed such a
simulation directly.

5 Further developments

As of this writing the ESPResSo-package continues to undergo significant
enlargement. We are currently implementing a standard dipolar Ewald sum
[27], which will enhance the capabilities to simulate ferrofluids or dipolar
fluids like simple water models, and add an enhanced leap-frog algorithm
for the rotational degrees of freedom. Also work has started to include an
anisotropic short range potential, namely the Gay-Berne potential, which will
allow the study of liquid crystals.
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For the dynamics of soft matter systems it is often necessary to include hydro-
dynamic interactions. Since in practice one cannot include all molecular de-
tails of the systems this can be achieved on a coarse grained level by coupling
the solvent degrees of freedom to the simulated particles. This will be imple-
mented via an advanced lattice Boltzmann algorithm that has already proven
its usefulness in polymer dynamics simulations [28]. An alternative way of
coarse graining hydrodynamics, called dissipative particle dynamics (DPD)
[29], is based on a momentum conserving thermostat. We will implement a
version according to Soddemann et al. [30]. And finally, a non-equilibrium
molecular dynamics algorithm [31], especially useful for driven systems, will
also be added.

On top of the present strengths of ESPResSo concerning the efficient
treatment of electrostatics, we plan to implement two very new ideas which
promise to be a significant improvement in investigating media with varying
local dielectric constants: While the first is a purely local algorithm by T.
Maggs [32] which seems to be very well suited for MC simulations and can
also be very useful for dense systems by using a constrained MD algorithm®,
the second is a finite difference multigrid scheme for electro- and magneto-
statics® which appears to be better for parallel applications, promising to be
fast for MD algorithms as well due to its recursiveness.

There are many more improvements planned for the next year, and hope-
fully the capabilities of ESPResSo will grow even further once other re-
searchers take up our idea and contribute to ESPResSo0 by using, customiz-
ing and extending it.
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Detonation Simulation with the AMROC Framework

Ralf Deiterding
California Institute of Technology, Pasadena

Abstract

Numerical simulations can be the key to the thorough understanding of the multi-dimensional
nature of transient detonation waves. But the accurate approximation of realistic detonations is
extremely demanding, because a wide range of different scales need to be resolved. This paper
describes an efficient simulation strategy based on a generic implementation of a blockstructured
dynamically adaptive mesh refinement technique for distributed memory machines. Highly re-
solved detonation structure computations with detailed hydrogen-oxygen chemistry demonstrate
the effectiveness of the approach in practice.

1 Introduction

Reacting flows have been a topic of on-going research since more than hun-
dred years. The interaction between hydrodynamic flow and chemical kinet-
ics can be extremely complex and even today many phenomena are not very
well understood. One of these phenomena is the propagation of detonation
waves in gaseous media. While detonations propagate at supersonic veloc-
ities between 1000 and 2000 m/s, they inhibit non-neglectable instationary
sub-structures in the millimeter range. Experimental observations can provide
only limited insight and it is therefore not surprising that the understanding
of the multi-dimensionality has improved only little since the first systematic
investigations [9, 26]. An alternative to laboratory experiments are direct nu-
merical simulations of the governing thermo- and hydrodynamic equations.
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But the additional source terms modeling detailed non-equilibrium chemistry
are often stiff and introduce new and extremely small scales into the flow
field. Their accurate numerical representation requires finite volume meshes
with extraordinarily high local resolution.

In this paper, we summarize our successful efforts in simulating multi-
dimensional detonations with detailed and highly stiff chemical kinetics on
recent parallel machines with distributed memory, especially on clusters of
standard personal computers [7]. We explain the design of our public-domain
framework AMROC (Adaptive Mesh Refinement in Object-oriented C++) [8]
that implements the blockstructured mesh refinement approach after Berger
and Collela [2]. Briefly, we sketch the employed numerical methods and the
treatment of the reaction terms.

2 Detonation Theory

A detonation is a shock-induced combustion wave that internally consists of
a discontinuous hydrodynamic shock wave followed by a smooth region of
decaying combustion. The adiabatic compression due to the passage of the
shock rises the temperature of the combustible mixture above the ignition
limit. The reaction results in an energy release driving the shock wave for-
ward. In a self-sustaining detonation, shock and reaction zone propagate es-
sentially with an identical speed d, , that is approximated to good accuracy by
the classical Chapman-Jouguet (CJ) theory, cf. [30]. But up to now, no theory
exists that describes the internal flow structure satisfactory. The Zel’dovich-
von Neumann-Déring (ZND) theory is widely believed to reproduce the one-
dimensional detonation structure correctly, but already early experiments [9]
uncovered that the reduction to one space dimension is not even justified in
long combustion devices. It was found that detonation waves usually exhibit
non-neglectable instationary multi-dimensional sub-structures and do not re-
main planar. The multi-dimensional instability manifests itself in instationary
shock waves propagating perpendicular to the detonation front. A complex
flow pattern is formed around each triple point, where the detonation front
is intersected by a transverse shock. Pressure and temperature are increased
remarkable in a triple point and the chemical reaction is enhanced drastically
giving rise to an enormous local energy release. Hence, the accurate repre-
sentation of triple points is essential for safety analysis, but also in technical
applications, e.g. in the pulse detonation engine. Some particular mixtures,
e.g. low-pressure hydrogen-oxygen with high argon diluent, are known to
produce very regular triple point movements. The triple point trajectories
form regular “fish-scale” patterns, so called detonation cells, with a charac-
teristic length L and width A (compare left sketch of Fig. 1).
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Fig. 1: Left: regular detonation structure at three different time steps on triple point trajectories,
right: enlargement of a periodical triple point configuration. E: reflected shock, F: slip line, G:
diffusive extension of slip line with flow vertex.

Fig. 1 displays the hydrodynamic flow pattern of a detonation with regular
cellular structure as it is known since the early 1970s, cf. [26, 19]. The right
sketch shows the periodic wave configuration around a triple point in detail.
It consists of a Mach reflection, a flow pattern well-known from non-reactive
supersonic hydrodynamics [4]. The undisturbed detonation front is called the
incident shock, while the transverse wave takes the role of the reflected shock.
The triple point is driven forward by a strong shock wave, called Mach stem.
Mach stem and reflected shock enclose the slip line, the contact discontinuity.

The Mach stem is always much stronger than the incident shock, which
results in a considerable reduction of the induction length /;,4, the distance
between leading shock and measurable reaction. The shock front inside the
detonation cell travels as two Mach stems from point A to the line BC. In
the points B and C the triple point configuration is inverted nearly instan-
taneously and the front in the cell becomes the incident shock. Along the
symmetry line AD the change is smooth and the shock strength decreases
continuously. In D the two triple points merge exactly in a single point. The
incident shock vanishes completely and the slip line, which was necessary for
a stable triple point configuration between Mach stem and incident shock, is
torn off and remains behind. Two new triple points with two new slip lines
develop immediately after D.

3 Governing Equations
The appropriate model for detonation propagation in premixed gases with

realistic chemistry are the inviscid Euler equations for multiple thermally
perfect species with reactive source terms [12, 30]. These equations form
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a system of inhomogeneous hyperbolic conservation laws that reads

Opi + V- (piu) = Wiy, i=1,...,K,
O(pu) + V- -(pu®@u)+Vp = 0, (1)
d%(pE) + V-((pE+pu) = 0.

Herein, p; denotes the partial density of the ith species and p = Zfil pi 18
the total density. The ratios Y; = p;/p are called mass fractions. We denote
the velocity vector by u and E is the specific total energy. We assume that
all species are ideal gases in thermal equilibrium and the hydrostatic pressure
p is given as the sum of the partial pressures p; = RTp;/W; with R de-
noting the universal gas constant and W; the molecular weight, respectively.
The evaluation of the last equation requires the previous calculation of the
temperature 7T'. As detailed chemical kinetics typically require species with
temperature-dependent material properties, each evaluation of 7" involves the
approximative solution of an implicit equation by Newton iteration [7].

The chemical production rate for each species is derived from a reaction
mechanism of J chemical reactions as

J K o vl K o v
— T f f T .
=S T () T () ] e
j= =1 =1
2
fir

with v
the 7th species in the jth reaction. The rate expressions kjf /" (T') are calculated
by an Arrhenius law, cf. [30].

denoting the forward and backward stoichiometric coefficients of

4  Numerical Methods

We use the time-operator splitting approach or method of fractional steps [15]
to decouple hydrodynamic transport and chemical reaction numerically. This
technique is most frequently used for time-dependent reactive flow compu-
tations. The homogeneous Euler equations and the usually stiff system of
ordinary differential equations

8th:Wsz(p17,pK,T), Z=1,7K (3)

are integrated successively with the data from the preceding step as initial
condition. The advantage of this approach is that a globally coupled implicit
problem is avoided and a time-implicit discretization, which accounts for the
stiffness of the reaction terms, needs to be applied only local in each finite
volume cell. We use a semi-implicit Rosenbrock-Wanner method [16] to in-
tegrate Eq. (3) within each cell. Temperature-dependent material properties
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Fig. 2: A self-sustaining hydrogen-oxygen detonation (d,; ~ 1627m/s, l;; ~ 1.404 mm)
calculated with the ZND theory and representation of two mass fraction distributions on grids
with different mesh widths (right). The dots represent the values in the center of a finite volume.
The abscissas display the distance behind the detonation front in mm.

are derived from look-up tables that are constructed during start-up of the
computational code. The expensive reaction rate expressions (2) are evalu-
ated by a mechanism-specific Fortran-77 function, which is produced by a
source code generator on top of the Chemkin-II library [17] in advance. The
code generator implements the reaction rate formulas without any loops and

inserts constants like z/jfi/ " directly into the code.

As detonations involve supersonic shock waves we use a finite volume
discretization that achieves a proper upwinding in all characteristic fields.
The scheme utilizes a quasi-one-dimensional approximate Riemann solver of
Roe-type [14] and is extended to multiple space-dimensions via the method of
fractional steps, cf. [27]. To circumvent the intrinsic problem of unphysical
total densities and internal energies near vacuum due to the Roe linearization,
cf. [11], the scheme has the possibility to switch to the simple, but extremely
robust Harten-Lax-Van Leer (HLL) Riemann solver. Negative mass fraction
values are avoided by a numerical flux modification proposed by Larrouturou
[18]. Finally, the occurrence of the disastrous carbuncle phenomena, a multi-
dimensional numerical crossflow instability that destroys every simulation of
strong grid-aligned shocks or detonation waves completely [23], is prevented
by introducing a small amount of additional numerical viscosity in a multi-
dimensional way [25]. A detailed derivation of the entire Roe-HLL scheme
including all necessary modifications can be found in [7]. This hybrid Rie-
mann solver is extended to a second-order accurate method with the MUSCL-
Hancock variable extrapolation technique by Van Leer [27].

4.1 Meshes for Detonation Simulation

Numerical simulations of detonation waves require computational meshes,
which are able to represent the strong local flow changes due to the reaction
correctly. In particular, the shock of a detonation wave with detailed kinet-
ics can be very sensitive to changes of the reaction behind, and if the mesh
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is too coarse to resolve all reaction details correctly, the Riemann Problem
at the detonation front is changed remarkably leading to a wrong speed of
propagation. We make a simple discretization test in order to illustrate, how
fine computational meshes for accurate detonation simulations in fact have
to be. The two left graphs of Fig. 2 display the exact distributions of Yy,0
and Yu,0, according to the ZND detonation model for the frequently stud-
ied Hy : Os : Ar Chapman-Jouguet detonation with molar ratios 2 : 1 : 7
at Ty = 298K and py = 6.67 kPa discretized with different grids.! Appar-
ently, a resolution of 4 finite volumes per induction length (4 Pts/l;, with
l;g = 1.404mm) is not sufficient to capture the maximum of the interme-
diate product HoO, correctly. This requires at least 5 to 6 Pts/l;,, but in
triple points even finer resolutions can be expected. As discretizations of typ-
ical combustors with such fine uniform meshes typically would require up to
10° points in the two- and up to 10'2 points in the three-dimensional case
the application of a dynamically adaptive mesh refinement technique is indis-
pensable.

5 An Adaptive Mesh Refinement Framework

In order to supply the required temporal and spatial resolution efficiently, we
employ the blockstructured adaptive mesh refinement (AMR) method after
Berger and Colella [2], which is tailored especially for hyperbolic conserva-
tion laws on logically rectangular finite volume grids. We have implemented
the AMR method in a generic, dimension-independent object-oriented frame-
work in C++. It is called AMROC (Adaptive Mesh Refinement in Object-
oriented C++) and is free of charge for scientific use [8]. An efficient paral-
lelization strategy for distributed memory machines has been found and the
codes can be executed on all systems that provide the MPI library.

5.1 Berger-Collela AMR Method

Instead of replacing single cells by finer ones, as it is done in cell-oriented re-
finement techniques, the Berger-Collela AMR method follows a patch-orien-
ted approach. Cells being flagged by various error indicators (shaded in Fig.
3) are clustered with a special algorithm [1] into non-overlapping rectangu-
lar grids. Refinement grids are derived recursively from coarser ones and a
hierarchy of successively embedded levels is thereby constructed, cf. Fig.
3. All mesh widths on level [ are r;-times finer than on level [ — 1, i.e.

Throughout this paper, only one hydrogen-oxygen reaction mechanism extracted from a
larger hydrocarbon mechanism assembled by Westbrook has been employed [28]. The mecha-
nism uses 34 elementary reactions for the 9 species H, O, OH, Hy, O2, H2O, HO2, H2O2 and
Ar.

68



Grid hierarchy

”/// ///

[/
”’//// ///

parent / child
77777 neighbors

Fig. 3: The AMR method creates a hierarchy of rectangular subgrids.

Atl = Atl_l/rl and Azn,l = Axnyl_l/rl with ry > 2 for I > 0 and
ro = 1, and a time-explicit finite volume scheme (in principle) remains sta-
ble on all levels of the hierarchy. The recursive integration order visualized
in the left sketch of Fig. 4 is an important difference to usual unstructured
adaptive strategies and is one of the main reasons for the high efficiency of
the approach.

The numerical scheme is applied on level [ by calling a single-grid routine
in a loop over all subgrids. The subgrids are computationally decoupled by
employing ghost or halo cell values. Three types of different ghost cells have
to be considered in the sequential case, see right sketch of Fig. 4. Cells out-
side of the root domain are used to implement physical boundary conditions.
Ghost cells overlaid by a grid on level [ have a unique interior cell analogue
and are set by copying the data value from the grid, where the interior cell
is contained (synchronization). On the root level no further boundary condi-
tions need to be considered, but for [ > 0 also internal boundaries can occur.
They are set by a conservative time-space interpolation from two previously
calculated time steps of level [ — 1.

Beside a general data tree that stores the topology of the hierarchy (cf. Fig.
3), the AMR method requires at most two regular arrays assigned to each sub-
grid. They contain the discrete vector of state for the actual and updated time
step. The regularity of the data allows high performance on vector and super-
scalar processors and cache optimizations. Small data arrays are effectively
avoided by leaving coarse level data structures untouched, when higher level
grids are created. Values of cells covered by finer subgrids are overwritten by
averaged fine grid values subsequently. This operation leads to a modification
of the numerical stencil on the coarse mesh and requires a special flux correc-
tion in cells abutting a fine grid. The correction replaces the coarse grid flux
along the fine grid boundary by a sum of fine fluxes and ensures the discrete
conservation property of the hierarchical method. See [2] or [7] for details.
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Fig. 4: Left: recursive integration order. Right: sources of ghost cell values.

5.2 Parallelization

Up to now, various reliable implementations of the AMR method for single
processor computers have been developed [3, 5]. Even the usage of parallel
computers with shared memory is straight-forward, because a time-explicit
scheme allows the parallel calculation of the grid-wise numerical update [1].
But the question for an efficient parallelization strategy becomes more deli-
cate for distributed memory architectures, because on such machines the costs
for communication can not be neglected. Due to the technical difficulties in
implementing dynamical adaptive methods in distributed memory environ-
ments only few parallelization strategies have been considered in practice yet,
cf. [24, 22].

In the AMROC framework, we follow a rigorous domain decomposition
approach and partition the AMR hierarchy from the root level on. The key
idea is that all higher level domains are required to follow this “floor-plan”.
A careful analysis of the AMR algorithm uncovers that the only parallel op-
erations under this paradigma are ghost cell synchronization, redistribution
of the AMR hierarchy and the application of the previously mentioned flux
correction terms. Interpolation and averaging, but in particular the calcula-
tion of the flux corrections remain strictly local [6]. In AMROC we employ
a generalization of Hilbert’s space-filling curve [21] to derive load-balanced
root level distributions at runtime. The entire AMR hierarchy is considered
by projecting the accumulated work from higher levels onto the root level
cells.

5.3 Object-oriented Implementation in AMROC
In principle, three main abstraction levels can be identified in AMR. At the top

level, the specific application is formulated with single-grid routines. Manda-
tory are the numerical scheme and the setting of physical boundary and initial
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conditions. The results in Sec. 6 were produced with subroutines in Fortran-
77. The paralle]l AMR algorithm and its components for error estimation, grid
generation and flux correction make up the middle level, which is completely
in C++ in AMROC. The middle level is independent of the spatial dimension
or the specific numerical scheme at the top level. The base level stores the
topology of the hierarchy and allocates all kind of grid-based data. Addi-
tionally, it provides standard operations that require topological information,
like ghost cell synchronization, interpolation or averaging to the middle level.
Furthermore, elementary topological operations on grid sets, like N, U or \ are
supplied. The necessary calculations are done effectively in a global integer
coordinate system, cf. [1].

AMROC’s hierarchical data structures are derived from the DAGH (Dis-
tributive Adaptive Grid Hierarchies) package by Parashar and Browne [22]
and are implemented completely in C++. A redesign of large parts of the
DAGH package was necessary to allow the AMR algorithm as it was de-
scribed in the previous sections. Additional new features in AMROC are
level-dependent refinement factors 7, periodic boundary conditions, a restart
option from memory for automatic time step algorithms and a restart feature
from checkpointing files for a variable number of computing nodes. Cur-
rently, AMROC consists of approximately 46, 000 lines of code in C++ and
approximately 6, 000 lines for visualization and data conversion.

6 Numerical Results

The self-sustaining CJ detonation of Sec. 4.1 is an ideal candidate for funda-
mental detonation structure simulations, because it produces extremely reg-
ular detonation cell patterns [26]. The application of the numerical methods
of Sec. 4 in the parallel AMROC framework allowed a two-dimensional cel-
lular structure simulation, which is four-times higher resolved (44.8 Pts/l;,)
than the best reference result that has been presented so far [20, 10, 13]. This
calculation was run on a small Beowulf-cluster of 7 Pentium III-850 MHz-
CPUs connected with a 1 Gb-Myrinet network and required 2150 h CPU-
time. On 24 Athlon-1.4 GHz double-processor nodes (2 Gb-Myrinet) of the
HEidelberg LInux Cluster System (Helics) our approach allowed the first suf-
ficiently resolved computation of the three-dimensional cellular structure of a
hydrogen-oxygen detonation. The maximal effective resolution of this calcu-
lation is 16.8 Pts/l;, and the run required 3800 h CPU-time. Further on,
we present the first successful simulations of diffracting two-dimensional
hydrogen-oxygen detonations that reproduce the experimentally measured
critical tube diameter of 10 detonation cells. These computations demonstrate
the advantages in employing a dynamically adaptive method impressively and
used approximately 4600 h CPU-time on the Helics.
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Fig. 5: Color plots of the temperature and schlieren plots of the density on refinement regions in
the first (left) and second half (right) of a detonation cell.

6.1 Two-dimensional Cellular Structure

We extend the one-dimensional ZND detonation of Fig. 2 to two space di-
mensions and initiate transverse disturbances by placing a small rectangular
unreacted pocket behind the detonation front, cf. [20] or [7]. After an initial
period very regular detonation cells with oscillation period ~ 32 us show up.
We exploit this regularity and simulate only a single cell. The calculation
is done in a frame of reference attached to the detonation and requires just
the computational domain 10 cm X 3 cm. The adaptive run uses a root level
grid of 200 x 40 cells and two refinement levels with 71 » = 4. A physically
motivated combination of scaled gradients and heuristically estimated rela-
tive errors is applied as adaptation criteria. See [7] for details. Two typical
snapshots with the corresponding refinement are displayed in Fig. 5.

The high resolution of the simulation now admits a remarkable refinement
of the triple point pattern introduced in Sec. 2. As the two transverse waves
form a perfectly regular flow, it suffices to zoom into a single triple point and
to analyze the wave pattern between two triple point collisions in detail. Fig.
6 displays the flow situation around the primary triple point A that is mostly
preserved during the last 7 us before a collision. An analysis of the flow field
uncovers the existence of two minor triple points B and C along the transverse
wave downstream of A. While B can be clearly identified by a characteristic
inflection, the triple point C is much weaker and very diffused. B is caused
by the interaction of the strong shock wave BD with the transverse wave. The
slip line emanating from B to K is clearly present. C seems to be caused by
the reaction front and generates the very weak shock wave CI. Downstream
of BD a weaker shock wave EF shows up. It is refracted in the point F as it
hits the slip line BK. From F to G this minor shock is parallel and close to the
transverse wave, which results in a higher pressure increase in the region FG
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than in the region EF. Unreacted gas crossing the transverse wave between B
and C therefore shows a shorter induction length than gas entering through
AB. The minor shock is refracted and weakened by the reaction front at point
G and forms the shock GH that is almost parallel to CI. The downstream line
of separation between particles passing through incident or Mach Stem shock
is the slip line AD. Along its extension DEL the movement of A results in a
shear flow between the reaction zones behind the Mach stem and downstream
of BD.

6.2 Three-dimensional Cellular Structure

We utilize the regular oscillating solution of the preceding section as initial
condition for a three-dimensional simulation and disturb the oscillation in the
xo-direction with an unreacted pocket in the orthogonal direction. We use a
computational domain of the size 7 cm x 1.5 cm x 3 cm that exploits the sym-
metry of the initial data, but allows the development of a full detonation cell
in the x3-direction. The AMROC computation uses a two-level refinement
with r; = 2 and 79 = 3 on a base grid of 140 x 12 x 24 cells and utilizes
between 1.3 M and 1.5 M cells, instead of 8.7 M cells like a uniformly refined
grid.

After a simulation time of ~ 600 us a regular cellular oscillation with
identical strength in z9- and x3-direction can be observed. In both trans-
verse directions the strong two-dimensional oscillations is present and forces
the creation of rectangular detonation cells of 3 cm width. The transverse
waves form triple point lines in three space-dimensions. During a com-
plete detonation cell the four lines remain mostly parallel to the boundary
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Fig. 7: Schlieren plots of p for a detonation diffracting out of the two different tubes. Left:
detonation failure for the width w = 8\, right: reinitiation for w = 10\.

and hardly disturb each other. The characteristic triple point pattern can
therefore be observed in Fig. 9 in all planes perpendicular to a triple point
line. Unlike Williams et al. [29] who presented a similar calculation for an
overdriven detonation with simplified one-step reaction model, we notice no
phase-shift between both transverse directions. In all our computations for the
hydrogen-oxygen CJ detonation only this regular three-dimensional mode,
called “rectangular-mode-in-phase”, or a purely two-dimensional mode with
triple point lines just in xs- or x3-direction did occur.

6.3 Structure of Diffracting Detonations

Experiments have shown that the behavior of planar CJ detonations propa-
gating out of tubes into unconfinement is determined mainly by the width of
the tube. For square tubes the critical tube width has been found to be of
the order of 10-times the cell width, i.e. 10\ [19]. For widths significantly
below 10\ the process of shock wave diffraction causes a pressure decrease

Fig. 8: Density distribution on four refinement levels at te,,q = 240 us for w = 10\. Multiple
enlargements are necessary to display the refinement levels (visualized by different gray tones).
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at the head of the detonation wave below the limit of detonability across the
entire tube width. Hydrodynamic shock and reaction front decouple and the
detonation decays to a shock-induced flame. This observation is independent
of a particular mixture. While the successful transmission of the detonation
is hardly disturbed for tubes widths > 10, a backward-facing re-ignition
wave reinitiates the detonation in the partially decoupled region for widths of
~ 10 and creates considerable vortices.

Adaptive simulations on a base grid of 508 x 288 cells and with four levels
of refinement with r1 5 3 = 2, r4 = 4 perfectly reproduce the experimental
observations. The schlieren graphics of Fig. 7 clearly show the extinction
for the tube width w = 8\ and the re-ignition wave for w = 10A. These
computations correspond to a uniform grid with ~ 150 M cells and have an

Fig. 9: Schlieren plots of p (upper row) and Yo (lower row) in the first (left) and second (right)
half of detonation cell, mirrored at x2 = Ocm, 5.0cm < z1 < 7.0cm. The plots of Yon are
overlaid by a blue isosurface of p that visualizes the induction length l; .
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effective resolution of 25.5 Pts/l;; in the x;-direction (with respect to the
initial detonation). At the final time t.,,4 = 240 us the larger run for w = 10\
uses only ~ 3.0 M cells on all levels. Fig. 8 visualizes the efficiency of the
adaptive approach.

7 Conclusions

We have described an efficient solution strategy for the numerical simula-
tion of gaseous detonations with detailed chemical reaction. All temporal
and spatial scales relevant for the complex process of detonation propaga-
tion were successfully resolved. Beside the application of the time-operator
splitting technique and the construction of a robust high-resolution shock cap-
turing scheme, the key to the high efficiency of the presented simulations is
the generic implementation of the blockstructured AMR method after Berger
and Collela [2] in our AMROC framework [8]. AMROC provides the re-
quired high local resolution dynamically and follows a parallelization strat-
egy tailored especially for the emerging generation of distributed memory
architectures. All presented results have been achieved on Linux-Beowulf-
clusters of moderate size in a few days real time, which demonstrates that ad-
vances in computational fluid dynamics do not necessarily require large-scale
super-computers, but integrated approaches that combine fast and accurate
discretizations with sophisticated techniques from computer science.
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Abstract

In this paper we introduce the Online Recruitment System for Economic Experiments (ORSEE).
With this software experimenters have a free, convenient and very powerful tool to organize
their experiments and sessions in a standardized way. Additionally, ORSEE provides subject
pool statistics, a laboratory calendar and tools for scientific exchange. A test system has been
installed in order to visually support the reader while reading the paper.!

1 Introduction

Laboratory experimentation has been a growing field in economics for the
last decades.? But the more experiments have been conducted in economics,
the more the issue of an appropriate methodology and organization has been
raised.

At the moment, there are the following items which are commonly agreed
to be symptomatic for economic experiments (compared to human subject
experiments in psychology and other social sciences):

'See http://www.orsee.org for a test system, downloads and a complete manual.

2For an introduction into experimental methodology and an overview about history and topics
of experimental economics see Davis and Holt (1993), Friedman and Sunder (1994) and Kagel
and Roth (1995).
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Subjects are payed for their participation.

Payment should reflect subjects’ performance in the experiment, i.e. the
strategy space should translate to the payoff space.’

Subjects should be volunteers motivated by the experimenters’ payment.
Subjects should not be deceived.

However, there is a wide variety in the procedures of maintaining a subject
pool and organizing experiments. In this paper we introduce the Online Re-
cruitment System for Economic Experiments (ORSEE), which aims

— to simplify the organization of economic laboratory experiments,
— to standardize the procedures of experiment organization,

— to depersonalize the experimenter-subject interaction,

— to allow the conduction of simple internet experiments,

— to provide information and statistics about the subject pool.

ORSEE has been implemented and has been online in Jena, Germany since
March 2003. Currently, it is used at four institutions.* The software is main-
tained at sourceforge.net.’ There you find the orsee-announce mailing
list, a bug report and a feature request tracker. In order to support the reader
while going through this paper a test system has been installed.®

Section 2 lists the functions of ORSEE and some technical parameters.
Next, we describe the two essential views of the system: the public and the
administration area. Section 5 and 6 show how laboratory and online surveys
can be conducted in ORSEE, respectively.

Before starting, some terms used throughout this paper should be defined:
A ’session’ is defined as processing an experiment at a certain time at a certain
location. An ’experimenter’ is a person who conducts and/or administrates
an experiment. A ’subject’/’participant’ is a person who is recruited to par-
ticipate in an experiment. Using ORSEE, experimenters create experiments
which may consist of several sessions and invite subjects. Invited subjects
may register themselves at one of the experiments’ sessions in order to par-
ticipate.

3See Harrison (1989).

4Max Planck Institute for Research into Economic Systems in Jena, Humboldt University
Berlin, University of Bonn and University of Cologne.

Shttp://sourceforge.net/projects/orsee/

(’http ://www.orsee.org
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2 Features

2.1 General Features

— multiple laboratory/subject pool/experimenters/experiment types support

— attribute query selection (e.g., select female participants, select participants
who have not participated in experiment X)

— random recruitment of subjects out of subject pool

— structured public and internal experiment calendar including lab reserva-
tion for maintenance etc.

— reputation system (number of no-shows, i.e. the number of times a partic-
ipant registered for a session but did not show up)

— automated mailing for registration process

— subjects are informed by automated e-mails about the sessions they regis-
tered for

— rule based automated session reminder mailing

— subjects are able to manage their own account (without password, using an
individualized URL)

— overview about registration state

— experimenters are informed about session’s state by automated e-mails

— calendar and session’s participants lists in printable format (pdf)

— upload / download section

— build-in module for designing and conducting complete online surveys

— regular e-mails with experiment calendar and subject pool statistics to ex-
perimenters

— multiple experimenter/subject language support

— easily configurable via the web interface

— customizable layout

— open source

2.2 Technical Features

— LAMP application
runs on Linux
Apache webserver recommended
uses MySQL database
implemented in PHP
— data is completely separated from the application
— recommended system: Linux on i386/i686 processors, other unixes and
Windows Server should work as well
— further requirements: PHP on command line, webalizer for usage statis-
tics, cron daemon for regular jobs
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3 The Public Area

The public area is the part of ORSEE which visitors and (potential) subjects
can access without having a password. All information provided at these
pages can be edited in the administration section.

The rules page displays the general experiment rules set by the institu-
tion. These can include rules for laboratory experiments, internet experi-
ments, video experiments, or online surveys. The rules should contain in-
formation about the reputation system used, and the experimenters’ policy of
handling no-show-ups and late-comers. They should also contain general in-
formation about the normal procedure of an experiment, if there are payments
or not and so on. In order to deal with legal requirements and to provide trust
to potential participants ORSEE provides a privacy policy page which should
state the policy of the institution regarding the data in the recruitment system
and the data collected in experiments.

Subjects regularly have questions about details of the registration proce-
dure, the use of the system and the practices you are using to organize and
conduct experiments at your institution. The FAQ page answers these ques-
tions. They are ordered by an evaluation number, which is the sum of different
participants who thought that this note answered their question. The answer
page opens in a separate small window.

The calendar contains an overview of all experiments and their sessions.
The information about a session contains the (public) name of the experi-
ment, the time, date, duration and location of the session and the status of
the session. The latter is denoted as free places if the registration time has
not expired and there are free places left, and as completed otherwise. Thus,
sessions which are not full already but whose registration period has expired
are marked as complete at the public area.

To register in the system, potential subjects click on the appropriate link
in the menu. First participants have to choose their own sub-subjectpool.
The page will only show up if different subgroups are defined. After having
selected their subgroup, people see the rules for experiments and the privacy
policy. They have to accept both by clicking on the acceptance button before
coming to the registration page.

On the registration page (see Figure 1) people can enter their data. Only
the e-mail address, the last name, and the first name are required. A text
shown above the form indicates that providing additional personal informa-
tion can lead to more invitations. These details include gender, phone number,
begin of study, field of study, and profession (depending on sub-subjectpool).

After submitting the registration form by clicking the button, the data is
checked for doubletons with already registered participants and will be in-
serted only in a temporary table. The candidates are informed that they will
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Fig. 1: Participant Registration Form.

receive an e-mail to the account given to confirm their registration. This aims
to avoid nonsense registrations. In their confirmation e-mail participants re-
ceive a link to click on. This brings them to a page confirming their successful
registration. Now the data will be inserted in the regular participant table.

Every e-mail participants get from the system contains a link in the footer,
which leads to the participant data editing page. Here a form similar to the
registration form allows the user to change his data or to unsubscribe in order
not to get further invitations. To keep database integrity the account is not
deleted internally. If the subject tries later to register again with the system,
the system recognizes him and an experimenter can reactivate his account
by hand. On the privacy policy page we use to declare that we will delete
personal data on written request (see next Section 4).

An experiment invitation e-mail (see Figure 2) includes another link which
leads to the participant’s experiment registration page (see Figure 3). This
page consists of three parts:

— alist of future sessions of all experiments the participant has been invited
for, yet has not participated or registered so far and for which the registra-
tion period has not expired

— a list of the future experiment sessions the participant has already regis-
tered for

— alist of former sessions a participant was registered for, including a sum-
mary of finished sessions

While the two latter parts only have informational character, the first list
contains small register buttons on the right side. If a user clicks on one of
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Fig. 2: Experiment invitation e-mail.

these buttons, he registers for the corresponding session. A text above the
page informs participants about the binding character of the registration. At
the same time an e-mail is sent out to the participant’s e-mail address to in-
form him again about the successful registration, containing the date, time
and location of the session.

At a time specified at the administration page for the session a subject has
registered for (e.g., 48 hours before the session starts), a session reminder
e-mail is sent out to the participant.

ORSEE provides no mean for subjects to deregister from a session. We
rather encourage subjects to check thoroughly if they are available for the
time of the session at the moment of experiment registration. However, if
there are reasons beyond his control, the participant can write an e-mail as a
reply to his registration e-mail, and the experimenter will deregister him.

4 The Administration Area
To access the administration area, an experimenter has to log in first. User-
names, passwords and user rights are provided by a superuser administrator.

Beside the experiment organization logic, the administration area provides
a bunch of useful functions. In the options section nearly all settings regarding
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Experiment registration

Experiments you are invited for:
Please check your availability for a date BEFORE you register for it. A checkout is in principle not
possible, except for good reasons like illness etc.

Exp2

Registe
D4,/13/2004 16:00-17:30, Goethe-Gallery, registration until 04/10/2004 16:00 2ol

Registe
04/14/2004 12:00-13:30, Intitute's Laboratory, registration until 04,11,/2004 12:00 Resister |

Register
04/15/2004 15:00-16:30, Goethe-Gallery, registration until 04/12,/2004 15:00 =A

Expl
04,/13/2004 15:00-16:00, Intitute's Laboratory, registration until 04/10,/2004 15:00 complete

Experiments you are already registered for: (PRINT VERSION)

Laboratary addresses

Goethe-Gallery Second floor
entry right beside the animal shop
Intitute's Laboratory Max Planck Institute

Kahlaische Strasse 10
Basement

Experiments you participated:
Registered for: 0
Not shown up: 0

Experiment Date and Time Location Showup?
testexpl 03/22/2004 14:30-16:00 Goethe-Gallery 77

Fig. 3: Experiment registration page.

the system can be done. These are general settings as system e-mail sender
address, defaults for forms and output, colors used, professions and fields of
study known by the system, the schedule of regular tasks to be done auto-
matically by the system, default e-mail texts, the page content for the public
pages, and the FAQs listed in the public area.

In this section, also the laboratories the system serves on can be registered.
You may create different public experiment types to which participants may
subscribe and match them with the internal experiment types implemented in
ORSEE (laboratory and internet experiments, online surveys).

Different sub-subjectpools can be set up. At time of registration, subjects
self-select to a subject pool by a provided self description. This allows you
to administrate different populations, for example undergraduate students at
your university, professional internet experiment participants, PhD students
and so on.

A special strength of ORSEE is it’s multilingualism. Every output by the
system (e-mails, pages, pdf files etc.) is configured in a huge language table.
Thus, every experimenter and even every participant may select the language
to communicate with the system given that the language is installed. You may
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edit all output via the web interface, and even create a new language. To do
this, you have to translate the terms of an existing language to yours.

The experiment calendar (see Figure 4) provides the current state of lab-
oratory booking, but also the timing and registration state of sessions etc.
You may access the experiments, sessions and participant lists directly from
the calendar. The calendar is sent to subscribed experimenters as a regular
system task.

In the downloads section all general uploads like the system’s manual and
files for experiments (like instructions, programs, presentations) uploaded by
experimenters can be found. This facilitates collaboration and learning be-
tween experimenters.

The participants section allows the experimenter to maintain the subject
pool. You have the option to search through the current subject pool or
"deleted’ participants (see below), to add new participants or to send out bulk
mails to selected subjects. At each participant’s page, you will see a com-
plete history of his experiment registrations and participation (see Figure 5).
To keep database integrity, in ORSEE you cannot really delete a participant
from the database. There are three options you have:

1. You can unsubscribe the subject. This is what the participant can also do
himself at his personal data page. An unsubscribed participant will not
receive any invitations to experiment sessions anymore.

2. You can exclude the subject. This is nothing else than the unsubscription
with an additional flag set that it was not the participant’s choice to get

April 2004

Mo Tu wel Th R Sal Bu
m oz n: o m
12:00-13:30
Iertitiate’s Labios story
Testexp2
bgreiner
1(3,1)
[Paicipanta]
os 06 07 | o2 09 o 11
04:00-20:00 06:00-05:00
labs o Y laks -
bareiner Bareiner
Edit Edn.
12 13 4 15 16 17 18
19 20 22 2 24 25
26 27 28| 29| 30

Fig. 4: Internal Experiment Calendar.
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Fig. 5: Participant Edit Page.

unsubscribed. A reason for exclusion might be that the subject has not
shown up at his booked experiment sessions for a certain number of times.

3. You may empty the subject’s personal data. This option is included due
to privacy issues. Only the subject’s ID will be kept in the system, but all
personal data will be deleted. You may recover unsubscribed and excluded
participant entries, but not emptied ones.

A comprehensive statistics section provides user with summarizing data.
All actions of participants in the public area, experimenter actions in the ad-
ministration area and all runs of regular tasks by the system are logged to the
database. In this section you can surf these log files.

Moreover, you may have a look at the complete webserver statistics for
the system’s server directory (generated by webalizer), graphs and tables for
experiment participation and user actions, and full subject pool statistics for
gender, profession, field of studies, experience, no-shows per month and per
count, which can be restricted to sub-subjectpools (see Figure 6).

5 Conducting a Laboratory Experiment

In this section we will describe the procedure of organizing a laboratory ex-
periment with ORSEE. The experiment overview page lists the current ex-
periments already registered in the system (see Figure 7). To list only the
experimenter’s or already finished experiments, use the links in the menu on
the left side.

From here the experimenter may access the experiment main page of the
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listed experiments by clicking on the appropriate name, or create a new ex-
periment. On the experiment creation page (Figure 8) she fills in the internal

€Ml bgreinerib hu-berinde
2 1
o

Teste (Ll frooms 10/ 210/ 004 10 04/ 117004
Ty Laber atory {Video) Sevsiona: 2
Experimentes: bgreiner Ml borelnerdunt-boein de
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o
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Sl bgreieersuni-boek e

test (fla) frum 06/ 12/ 7000 15:00 to 0 10, 2000 1500

Isperimentee: qonses [T
Participnts from st pood Trew reghtration

Fig. 7: Experiment Overview.
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and public name of the experiment, a description, the type of experiment, her
name and e-mail address. The public name is used to identify the experiment
in the subject area of the system, the internal name is used at the administra-
tion pages and in e-mails to experimenters.

Edit experiment

Id 1847472362
Internal name: | [Help]
Public name: | [Help]
-l
Description:
=] et
Type: Lahoratory (Laboratory) = | [Heipl
Experimenter: I [Heipl
[User names]
Experimenter's Email: I [Help]
E-mail sender address: Iexper\ments@orsee net [Help]
Experiment finished? ™ [Hepl
Hide in participant statistics? 7 [Heip)
Hide in public calendar? ™ [Helpl
Link to paper: I [Help]
Add

Fig. 8: Experiment Creation Page.

After adding an experiment, the experimenter uses the session creation
page (which is accessible from the experiment’s main page) to register each
of the planned sessions with date and time, laboratory, experiment duration,
number of participants needed and over-recruited, the time of registration and
when the reminder should be sent to registered participants (see Figure 9).
When creating or editing a session the system checks whether the session
clashes with another laboratory booking and the experimenter gets a feed-
back.

Next, she assigns subjects registered in the database to her experiment.
When doing so, she can use different queries including name, e-mail-address,
number of no-shows and registrations, sub-subjectpool, gender, profession,
field and start of studies, and participation/registration at certain old experi-
ments.

ORSEE provides the feature to select a random subsample of a defined size
from the registered participants matching the query. This should be used to
prevent a bias regarding the fact that some subjects have immediate and more
often internet access than others.
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Once participants are assigned, the experimenter sends an invitation e-mail
which lists the sessions’ dates and times and includes a link to the subjects’
individualized registration page. Following this link the subject can choose
one date out of the sessions available. When registering for a session, a con-
firmation e-mail is sent to the subject.

When the registration period expires, a regular job of the system checks the
state of registration for the experiment. For each session, the experimenter
gets an e-mail informing her about the number of subjects registered, and
having attached a pdf-file containing the list of the names of participants. In
case of too few registrations the experimenter may now extend the registration
period, or cancel the session at the very end. At the time specified at the
sessions’s edit page the session reminder e-mail will be sent out.

During the whole registration process, the experimenter can observe the
current state of each session at the experiment main page. There are four
states of a specific session:

1. Not complete: There are not enough participants.
2. About complete: There are as much participants as explicitly needed for
the experiment, but not enough reserve participants.
. Complete: The number of required participants plus the reserve is reached.
4. Finished: All data was filled in for the session. The participation data will
be used for the reputation system.

W

We distinguish between five different independent states (flags) of a par-
ticipant with regards to a certain experiment:

Edit session

Td: 232720167
Date: [0z =] Joa=] [2004 =
Time: IEIE
Laboratory: Goethe-Gallery =
Duration of experiment: [01 =100 =] e
Session reminder (hours before start): [00 7] feipl
send reminder Iwhen as much paricipants registered as needed, else ask j
Needed participants: 24 =] Help1
Reserve participants: 03 =] Help1
Registration end (hours before start): [72 7] feipl
|
Remarks:
=
Session finished? I elp]

Mainpage of this experiment

Fig. 9: Session Creation Page.
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Fig. 10: Participant Query.

1. Assigned: The participant is allowed to register for a session of this expe-
riment.

2. Invited: The participant received an invitation e-mail from the system.

3. Registered: The participant is registered for a certain session of a labora-
tory experiment.

4. Showed-up: The participant was at the right location at the right time.

5. Participated: The participant really played the game.

The experimenter may also visit the actual participant list for each session
(Figure 11).

When everything is o.k., the experimenter conducts her experimental ses-
sion in the laboratory. She fills in the show-up and participation data for all
participants. When all data is filled in, she marks the session as finished, and
its data will be included in the calculation of reputation score for the partici-
pants. When all sessions are done, the experimenter marks the experiment as
finished, and it will be listed in the "old experiments" section.

91



Testexp2
Registered Subjects

RSO

Oueay: SELECT * FROM 29_partieipans, o1 _partieipate_st, or_s+33ions WHERE 01_pasticipants partieipas_idesr_partieipate_s participant_id 10
au_sewsbons.aeasion_beor_participate_at session_jd AND o_paticipate_at.experiment b 1374651 ARD o1 _partieipate_at.acasion_ = HTGA25Y AL
registeredsy’ OFDER BV sassion_Stan_year, se5sion_start_manth, $esskn_start_tay. session_stan_ur, sesskon_start_minme, iname. frame, email

. . - Prane o Maindiol U g [ —
Lantnanme Frstnane EMal Addess oo B o S e bcinated L

1 band bennl  mpelmensdersessrn T Amwepsegei  #1 r r
Huminess
BT —— W en s * = =
1 Geiner  Ben  pamemalds w0 Dentistry (1995 % W =
o e pen DRSNS g @ mchssomoes 0 (02320050 5] B R o
§ g ben  shnsasterdiolses ' ey ¥ e [oaeaeond 1500 =] P r =
Engish Langusge s
© kbbb RhBh oo kk Lisratue Studes 11 F =
(e i Amerbiai i)
T RMeniesg el Bmsinoudunihookads TG m Googaphy (1999 % OHE2004 1500 'I = F =
¥ Seersuber Sindbad  feedb e e m ol Liver s e o [ozaz00d 1500 =) I r
Stadbas (19H1)
» tewt tm el ' Bioidoimatics i} - F F
totesty  tes pabadesssson T mmion selenes (89 F =
T tesm pebedsseson Mmoo Dngeesring 20 48 w "
o
Rane Hone
Change

Fig. 11: Participant List for a Session.

6 Conducting an Online Survey

A special experiment type implemented in ORSEE is an *Online Survey’.’
After creation of the experiment, the experimenter fills in a special properties
page stating the start and stop time of the survey, the browser window size,
and a short description of the experiment (mentioning required technology
for participation and so on). The experimenter can restrict the participation to
invited subjects from the known subject pool or can allow for free registration,
specifying whether unknown participants have to fill in a personal data form.

An online survey may consist of an introductory page, an instruction page,
the personal data form, a number of questions, and an ending page. Each part
is freely configurable in ORSEE. Questions are of a certain type, have certain
predefined answering options and are organized in items. ORSEE supports
’text lines’ and ’text fields’, ’select fields’ for numbers and text, ’checkboxes’
and ’radio buttons’. The latter two can be presented as matrices. Questions
and items can be given a numbered or random order.

After having created and configured all pages and questions, the survey is
ready to start. Invited subjects can follow a link in their invitation e-mail to
participate, and if free participation is enabled, the experiment is listed in the
"Internet Experiments’ section of the public area. From the time specified as

TFor the implementation of this module, we used methods described in Greiner, Jacobsen and
Schmidt (2003).
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the start time of the survey subjects are allowed to fill in the questionnaire.
While the survey is running, the experimenter can observe the participation
rate and some simple average statistics of answers.

When the survey time runs out, no subject can start the survey anymore.
The experimenter may extend the time or end the survey by marking it as
finished. Participant and decision data may be downloaded separately as excel
spreadsheets.

7 License

The Online Recruitment System for Economic Experiments is available un-
der a special open source license called *Citeware’. Specifically, the source
code may be copied, modified and distributed under terms complying with
the Open Source Definition of the Free Software Foundation. However, the
use of derivative products is restricted in a way that any academic report, pub-
lication, or other academic disclosure of results obtained with the use of this
software will acknowledge the software’s use by an appropriate citation of
this paper.
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Abstract

A cross-platform development environment for nuclear magnetic resonance (NMR) experiments
is presented. It allows rapid prototyping of new pulse sequences and provides a common pro-
gramming interface for different system types. With this object-oriented interface implemented
in C++, the programmer is capable of writing applications to control an experiment that can be
executed on different measurement devices, even from different manufacturers, without the need
to modify the source code. Due to the clear design of the software, new pulse sequences can be
created, tested and executed within a short time. To post-process the acquired data, an interface
to well-known numerical libraries is part of the framework. This allows a transparent integra-
tion of the data processing instructions into the measurement module. The software focuses
mainly on NMR imaging, but can also be used with limitations for spectroscopic experiments.
To demonstrate the capabilities of the framework, results of the same experiment, carried out
on two NMR imaging systems from different manufacturers are shown and compared with the
results of a simulation.

1 Introduction
Nuclear magnetic resonance (NMR) is a versatile tool to investigate physical

properties of materials and living tissue. The flexibility of the NMR technique
can be attributed to the fact that a wide range of experiments is designed by
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solely altering the software that controls the hardware during the measure-
ment. With a given set of hardware components, various parameters of the
sample can be examined with different software-based experimental setups
(i.e. pulse sequences). An important task of the NMR scientist who develops
new NMR applications is therefore that of a software engineer. Provided a so-
phisticated programming interface for sequence design is available, advances
in the field of computer science can accelerate the process of creating NMR
applications.

Contemporary concepts like object-oriented design, polymorphism, and
generic programming are used nowadays in software engineering to create
modular, extensible, and easy-to-use software instead of procedural program-
ming (an excellent overview of these programming paradigms and their im-
plementation in C++ can be found in [1]). By contrast, NMR pulse sequences
are usually programmed using the procedural approach. That is, the sci-
entist provides a program that contains a list of sequential instructions to
trigger hardware-events together with some calculations to achieve the re-
quired properties of the sequence (e.g. resolution, 7 E, T'R). This results in
a non-modular, monolithic implementation of the sequence which seriously
limits the reuse of certain parts in another sequence, except for duplicating
the source code. A modern approach would describe the sequence as a com-
position of reusable, self-consistent objects that can be combined freely to
develop new experimental setups.

Recently, a software architecture has been presented [2] which makes use
of this approach by a double-layered design whereby the user interacts with an
application framework written in Java [3] which is mapped to corresponding
C++ functionality on the hardware controller and signal processing computer.
The programming interface is provided not only for sequence programming
but also for developing work flows which incorporate different measurement
techniques for clinical application. However, this framework is limited to
the devices of one manufacturer and its double-layered design may impose
a considerable overhead when adding new functionality, for example custom
real-time feedback.

In contrast, ODIN, which is subsequently introduced, concentrates on plat-
form-independent sequence design and data processing with a single open-
source code basis in C++. The hardware-dependent components that drive
the different scanners are encapsulated into low-level objects (pulses, gra-
dients, data-acquisition) from which complex, platform-independent parts of
the sequence are constructed. The same source code is used at all stages of se-
quence development, from simulation on a stand-alone platform to play-out
on a real-time system. ODIN uses the native functionality of the graphical
user interface on each platform, allowing a seamless integration of ODIN se-
quences.
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In this paper, the first section gives an introduction into the ODIN sequence
programming interface and its underlying concepts. The design of radio fre-
quency (RF) pulses will be described in more detail as this is one of the ma-
jor strengths of ODIN. The next two sections contain additional information
about the internal representation of the sequence within the ODIN library and
the mechanisms that are used to execute the experiment in different hardware
environments. After that, strategies to visualize and simulate the sequence are
presented, and the data processing framework of ODIN is discussed. Finally,
experimental results obtained with ODIN on different platforms are shown
and compared with the results of a simulation.

2 Platform-Independent Sequence Design

An NMR experiment is basically a sequence of periods where the sample
is exposed to different magnetic field configurations, such as RF pulses and
magnetic field gradients, or periods where data is acquired. From these basic
sequence elements, complex experiments can be composed which measure
spectroscopic properties, relaxation, and transportation processes of the spins
within the sample. Magnetic field gradients extend these experiments to spa-
tially resolved data sets, i.e. images of these parameters. In addition, repeti-
tive measurements yield time series of physiological processes within living
tissue, for example neuronal activity in the human brain.

The NMR sequence can be described in terms of the physical properties of
their elements and the arrangement of these sequence elements as a function
of time. A simple NMR sequence is shown in Fig.1. This level of description
is independent of the measurement device. ODIN provides a programming
interface in terms of a C++ class hierarchy which reflects the physical aspects
of a sequence. A sequence program which is written using this framework
can be executed on different NMR hardware. The system-specific actions are
performed by a library that transfers the sequence-specific requests to the ac-
tual measurement hardware as depicted in Fig. 2. The benefit of separating
the physical logic of the experiment from the peculiarities of the current hard-
ware is the portability of the sequence program. It can be reused with other
hardware, even from another manufacturer.

2.1 Sequence Programming Interface

In the following, the term basic sequence objects refers to elements of the se-
quence that cannot be divided into smaller elements from the physical point of
view. Examples of such "sequence atoms" are periods of RF irradiation, the
application of temporary field gradients or intervals of data acquisition. Each
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=

Gy

Receiver

time

N times T

Fig. 1: A simple gradient-echo sequence. The inner part contains a slice-selective RF pulse,
gradients Gx, Gy, Gz for spatial encoding, and a period during which the signal is received. This
part is repeated N times for linear stepping of the gradient strength of Gy. The sequence objects
of these elements are indicated below. The operators + and / between these objects combines
them to form the sequence.
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NMR-methods (C++ source code)

class Mdeft

class MySequence

Sequence Programming Interface

ODIN sequence modelling framework

Platform A Platform B || -==z==z-=:=¢

ODIN data processing framework

Data Processing Interface

MySequence: :reco

Mdeft: :reco

Final Data

Fig. 2: Flowchart of an NMR experiment performed with the ODIN framework. The sequence
programmer implements a C++ class that represents the experimental method and uses the
platform-independent sequence programming interface. An object of this class is then used by the
ODIN library to execute the sequence on the different platforms by means of hardware-specific
instructions within the library. The acquired raw data is then post-processed by a member func-
tion reco of the same class that was used for the measurement. Finally, the processed data
(images, spectra) are written to disk.
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basic sequence object is instantiated from a C++ class which handles its phys-
ical properties, for example the duration. These objects are constructed dur-
ing the initialization of the sequence according to the instructions given by the
sequence programmer. From this collection, the sequence is constructed by
grouping the sequence objects into container objects. To simplify the notion
of composing new container objects, the operators + and / are overloaded
and can be used to specify whether two sequence objects a and b should be
played out sequentially (a+b) or in parallel (a/b). As an example, the
source code for the simple sequence visualized in Fig. 1 is printed in Fig. 3.

class SimpleSequence : public SegMethod {

private:
// Sequence objects:
SegPulsarSinc pulse; SegGradPhaseEnc phase;
SegAcgRead acq; SegAcgDeph deph;
SegObjLoop loop; SegDelay delay;
SegObjList oneline;

public:
SimpleSequence (const tjstring& label) : SegMethod(label) {

set_description("Simple Gradient Echo Sequence");
}

void method_pars_init () {
// This is the place where sequence-specific parameters can be
// initialized

void method_seqg_init () {
// This function builds the sequence, it is called every time
// a parameter has been changed by the user

// The global objects commonPars, geometryInfo and systemInfo

// hold parameters that are common to most sequences,

// the information about the selected geometry and system

// specific properties, respectively. These parameters

// can be accessed via the appropriate ’‘get’ and ’‘set’ functions.

// Excitation pulse:
pulse=SeqgPulsarSinc ("pulse",geometryInfo->get_sliceThickness()) ;

// Geometry:
// calculate the resolution in the read direction and set the number of
// phase encoding steps so that a uniform resolution will be obtained
float resolution = geometryInfo->get_FOV (readChannel)
/ commonPars->get_MatrixSize (readChannel) ;
commonPars->set_MatrixSize (phaseChannel,
geometryInfo->get_FOV (phaseDirection) / resolution) ;

// Phase encoding:

phase = SeqgGradPhaseEnc ("phase",
commonPars->get_MatrixSize (phaseChannel)
geometryInfo->get_FOV (phaseChannel)
phaseChannel, 0.25*systemInfo->get_max_grad()) ;

// Frequency encoding:

acqg = SegAcgRead("acq", commonPars->get_AcgSweepWidth(),
commonPars->get_MatrixSize (readChannel)
geometryInfo->get_FOV (readChannel) , readChannel) ;

// Dephasing for frequency encoding
deph = SegAcgDeph ("deph",acq,FID);
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// One gradient echo to sample one line in k-space
oneline = pulse + phase/deph + acqg;

// Sequence layout:
set_sequence( loop ( oneline + delay ) [phase] )i
}

void method_rels () {
// This is the place where sequence timing is performed

// ensure correct repetition time by setting the duration of ’‘delay’
double linedur = oneline.get_duration();
if (linedur>commonPars->get_RepetitionTime () )
commonPars->set_RepetitionTime (linedur) ;
delay.set_duration( (commonPars->get_RepetitionTime ()-linedur)) ;
}

void method_pars_set () {
// This function is called once before the measurement is started
}
Yi

Fig. 3: The source code of a simple gradient-echo sequence, implemented as a C++ class to be
used within the ODIN framework.

Besides this technique of building sequences from scratch by grouping ba-
sic sequence objects together, the ODIN library offers many predefined high-
level sequence objects as C++ classes. For example, the object acq in Fig. 1
and 3 is an acquisition window with the simultaneous application of a gradi-
ent field that is used in many imaging sequences for spatial frequency encod-
ing. These more complex objects are constructed from basic sequence objects
within the library, using the same mechanism of building container objects as
the sequence programmer would. In addition, the class of these composite
objects provides an interface that is adjusted to its high-level concept. For
instance, the object acq has a member function that returns the point in time
of the center of the acquisition window with proper consideration of the ramp
of the simultaneous gradient.

2.2 Pulse Design

A crucial part of the sequence is the application of RF pulses in order to
generate a detectable signal from a limited spatial or spectral range of spins
within the sample. The ODIN framework contains a flexible module for the
generation and simulation of RF pulses. A wide range of pulses is supported
by a plug-in style mechanism. The desired excitation profile, gradient shape
and frequency filter can be selected and modified separately to match it opti-
mally to the specific application. It can be easily extended by supplying the
module with new plug-ins which generate k-space trajectories or calculate
the RF waveform as a function of time or k-space coordinate. The following
pulse types are already supported by existing plug-ins of the ODIN library:
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— Slice-selective pulses (Sinc, Gauss), optionally with a VERSE [4] trajec-
tory for reduced power excitation.

— Adiabatic pulses (Sech [5], WURST [6]).

— Spectrally and spatially selective pulses [7] for slice-selection with a pre-
defined spectral profile (e.g. for fat suppression).

— Two dimensional (2D) pulses [8] with various excitation shapes and differ-
ent spiral trajectories.

— Composite pulses [9] which are created by concatenating one of the above
pulses with different transmitter phases and flip angles.

In addition, these pulses can be filtered either in k-space or in the time domain
using a filter plug-in. The benefit from separating the pulse shape and the tra-
jectory into different plug-ins can be illustrated by considering the generation
of 2D pulses: Each of the excitation profiles (point, box, disk, user-defined list
of points) can be used in combination with any of the 2D trajectories in order
to generate a pulse profile that is well adjusted to the requirements. For ex-
ample, an excitation profile that consists of a chain of adjacent points together
with a slew-rate optimized trajectory is useful for curved slice imaging [10].

Because the pulse module is a regular sequence object, it can be integrated
seamlessly into any NMR sequence. For example, the object pulse in Fig. 1
and 3 is a slice-selective specialization of this module using the Sinc plug-in
for the pulse shape. In addition, a graphical user interface (Fig. 4) which acts
as a front-end to the pulse module can be used for interactive pulse design
and monitoring of the corresponding excitation profile.

2.3 Loops and Vectors

An essential aspect in most NMR experiments is to repeat certain parts of the
sequence unchanged or with different settings. Examples are the repetition of
a gradient-echo with different strength of the phase-encoding gradient in con-
ventional Fourier imaging as used in the sequence of Fig.1, or the repetition
with different pulse frequencies for multi-slice acquisition.

To use this technique in a uniform manner, ODIN introduces the concept of
vector objects and loop objects. Vector objects are elements of the sequence
that are used repeatedly with different settings. The following predefined
vector classes, derived from a common base class SegVector, are available
to the sequence programmer:

— Gradient pulses with different gradient strengths for phase encoding or dif-
fusion weighting.

— Sequence objects that drive the transmitter (RF pulses) or receiver (ac-
quisition windows) contain two vector objects for frequency and phase
switching to be used for multi-slice experiments or phase cycling.

— Delay objects with a variable duration, which is changed for each iteration.
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Fig. 4: The Pulsar user interface for interactive pulse design and simulation. The panel to the
left allows editing of the pulse parameters and shows the time courses of the RF and gradient
fields. The current settings show a 2D selective pulse, i.e. a pulse that restricts the excited spins
in two dimensions. The right-hand side displays the result of a simulation with this pulse.

— A list of user-defined rotation matrices that can be attached to gradient-
related objects in order to alter their direction subsequently.

— A container object that holds a list of other sequence objects which are
played out sequentially for each repetition.

Although this set of specialized vector classes is probably not exhaustive, the
last class may be used to easily extend this list by storing sequence objects
for each repetition into the container. This emulates the behavior of a built-in
vector class.

To specify which parts of the sequence will be repeated and which vectors
will be modified at each repetition, loop objects play a central role in sequence
design with ODIN. They possess a function-like syntax (functors) when used
within a sequence:

loop ( kernel ) [vectorl][vector2]...

With this line of source code, the loop object 1oop is used to repeat the se-
quence part kernel while incrementing the properties of the vector objects
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vectorl,vector2, ... thatare located within kernel. Instead of us-
ing a vector object, an integer number N can also be given as an argument to
the loop, which will then repeat the sequence part N times unchanged. By
using this common notation for all variable aspects of a sequence, new appli-
cations can be implemented rapidly without dealing with the specific aspects
of the hardware.

2.4 Sequence Parameters

Normally, each sequence has a set of parameters which specify the actual ex-
periment, for example the sampling rate for data acquisition or the duration of
the RF pulse. The sequence parameters are edited interactively within the user
interface of the measurement device, and the sequence is recalculated accord-
ing to the new settings. Within ODIN, these parameters are members of the
C++ sequence class, allowing transparent access to their values in the mem-
ber function that prepares the experiment. Well-known data types (integer
numbers, floating point numbers, Boolean values) can be used as sequence
parameters. They are designed to be used exactly like built-in types of the
C++ language, resulting in understandable source code.

The ODIN library hooks the set of parameters specified by the sequence
programmer into the native editing mechanism of the measurement device.
After the measurement, the parameters are stored on disk in JCAMP-DX for-
mat [11] together with the raw data. In the post-processing step, the param-
eters and the raw data are then read from disk. If no native mechanism for
parameter editing exists (e.g. on a stand-alone platform), ODIN provides its
own set of widgets using the Qt library [12] to edit the parameters interac-
tively (Fig. 5).

3 Internal Representation of the Sequence

Any NMR sequence has a nested structure, that is, basic sequence objects
can be grouped together to form logical units, which in turn can be collected
to build more complex units. This leads to an internal representation of the
sequence as an ordered tree of sequence objects. The leaves of this sequence
tree are the basic sequence objects (RF pulses, gradients, acquisition win-
dows, evolution delays). The sequence containers are represented by nodes
of the tree. They contain a list of references to their members in the same or-
der as given by the sequence programmer. The nodes can contain additional
information, e.g. a loop object contains the number of repetitions besides the
elements of the sequence that are repeated.
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Label Type |Duralmn[ms] | Properties
simple

ﬁ—s\mp\e SimpleSequence 1100130 NumOfOhjects=1
E—unnamedﬁqubJLuupU SeqObjLoop 1100130 Times=11, NumOfvectors=1, NumOfDbjects=1
Brpulse+phase/deph_acy_read/acy_middelay+acq_acq_a.. SeqObjList 100.0 MumOfObjects=4
m-pulse SeqPulsarSine 4 76663 Shape=5inc, Trajectory=Canst, Filter=Triangle
Bpulse_handler SeqGradChanParallel 476663
pulse_Gz SenGradChanList 476688
Blgy_dummy SeqGradChanList 314687
g _durmmmy SeqGradChanList 314867
Bpulse_rftrain SeqOhjList 262937 MumOfdhjects=2
SeqDelay 0.07250
SeqPuls 255687 Samples=326, B1=002143
SeqParallel 216621
SeqGradChanParallel z.18621
SeqGradPhaseEnc 218621
phase_grad SenGradyector [ikiloaka) Strength=0.00750, Channel=phase
phase_off SeqGradDelay 0.7250 Strength=0.0, Channel=phase
+deph SeqParallel 2.070
H-deph SeqAcgDeph 2070
E}»depmgrad SeqGradConstRampPulse 2.070
deph_grad_onramp SeqGradRamp 0.0950 Strength=-0.00514, Channel=read
deph_grad_consigrad SeqGradConst 1.280 Strength=-0.00514, Channel=read
deph_grad_offramp SenGradRamp 0.0350 Strength=-0.00514, Channel=read
Bracy_readface_middelay+acy_acy_acq_tozero SeqAcyRead 354250
Eracq_read SeqGradChanParallel  3.340
Iil»acq_reau SeqGradConstRampPulse 3.340
acq_tead_onramp SenGradRamp 0030 Strength=0.00534, Channel=read
ace_tead_constgrad SeqGradConst 2560 Strength=0.00534, Channel=read
acq_read_offramp SeqGradRamp 0.090 Strength=0.00334, Channel=read
acq_middelay+acy_acq_acg_tozero SeqOhjList 353250 MumOfObjects=3
ace_tiddelay SeqDelay 013250
ach_acq SeqAc 2710 MumOfdhjects=1
acq_tozero SeqDelay 0.690
—unnamedSeqDelay SenDelay 89.50441

Fig. 6: The sequence tree of the example sequence from Fig. 1 visualized within the ODIN
framework. The first column depicts the structure of the tree whereby the basic sequence objects
can be found at the end of each branch and the container objects at the nodes, indicated by small
boxes to the left. The second and third column show the C++ type and the duration of each
object. Properties that are specific to each object are shown in the last column, e.g. the selected
RF object pulse_tf has a waveform of 326 samples with the given amplitude Bl.

The tree is constructed during the preparation phase of the experiment ac-
cording to the instructions of the sequence programmer. Each sequence has
its special tree. As an example, Fig. 6 depicts the sequence tree structure for
the sequence of Fig. 3. The created sequence tree is the central data structure
that is used in further steps of the experiment. If a certain operation has to
be performed for the sequence, e.g. calculating the total duration of the ex-
periment, the sequence tree is traversed recursively, querying each object for
a value (in this case its duration), or requesting a certain operation from the
object. Thereby the starting point is the root of the sequence tree. At each
node that contains an ordered list of other sequence objects, these sub-objects
are in turn requested to perform the operation. This recursion in each branch
terminates at the leaves, if a basic sequence object is reached. The two fol-
lowing sections describe how this technique of traversing the sequence tree
is used to control the measurement device or to visualize and simulate the
sequence.
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The whole sequence (i.e. the root of the tree) is in itself a container ob-
ject, instantiated from a C++ class, which is implemented by the sequence
programmer. This class is derived from a base class that acts as an interface
between the sequence and the ODIN library. By the mechanism of virtual
functions in C++, a set of sequence-specific member functions must be pro-
vided by the sequence class that will be called during initialization, prepara-
tion, and data processing of the experiment. With this technique, all sequence
modules share a common interface which can be used by the library in a uni-
form manner.

4 Hardware-Specific Implementation

In this section, two examples show how the ODIN sequence tree can be uti-
lized to drive the hardware of two scanners from different manufacturers:

Platform A (Bruker Medspec, 3 Tesla) is driven by a pulse program which
is an ASCII file that contains a list of sequential instructions for the hard-
ware and controlling structures (loops, jumps) to repeat certain parts of the
sequence. To perform an experiment, a set of parameters must be provided
that contains the detailed settings for the measurement. The pulse program
and the parameter set cover all characteristics of the experiment on this plat-
form. ODIN maps its internal representation of the sequence to the device
by traversing the sequence tree and generating an entry in the pulse program
for each sequence object. In addition, each sequence object is asked to make
an entry into the parameter set. After transferring the generated files to the
system software, the sequence can be executed.

On platform B (Siemens Trio, 3 Tesla), the system components are driven
directly by a C++ program in real time. The corresponding source code must
be provided by the sequence programmer. It contains instructions to trigger
hardware events (RF pulses, gradients) at specified points in time. The exper-
iment is performed during run-time of this program. On this platform, ODIN
executes a sequence by traversing the sequence tree at run-time, querying
each sequence object for a corresponding event. An internal counter takes
care of the correct starting time of each event.

The above procedures presume that at least the basic sequence objects con-
tain code to map themselves to the current hardware. The hardware drivers
for the different platforms are therefore located inside these objects. The con-
tainer objects and the high-level sequence objects do not have to be aware of
how to drive the current hardware. Because the number of basic sequence
objects is limited, the hardware-specific code is located only at a few places
within the library, allowing straightforward portability to new system types.
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5 Sequence Visualization and Simulation

Even on computers where no NMR device is attached, the ODIN frame-
work can be useful for developing sequences. On a stand-alone platform,
the time courses of the different channels (RF, gradients and receiver) can be
displayed, or a simulation of the sequence acting on a virtual sample can be
performed. This is achieved by giving all basic sequence objects the capabil-
ity to generate a digitized version of themselves, i.e. a function that returns
the values of each channel for equally spaced points in time.

To generate a digitized version of the whole sequence for visualization,
the container objects can combine them recursively, traversing the sequence
tree until the whole sequence is processed. The result can then be displayed
graphically. This is currently realized by generating a multi-channel audio
file which is then displayed using conventional sound editors. In addition,
predefined functions exist which calculate important aspects of the sequence
numerically using the digitized sequence, for example gradient moments, the
strength of diffusion weighting or the k-space encoding of different coherence
pathways in a multi-pulse sequence.

For the simulation, a virtual sample that holds spatially resolved NMR-
specific properties (spin density, relaxation rates 77 and 75, frequency offset)
is required. It can be created by means of a graphic editor or a special ODIN
sequence that measures these properties with a high resolution. The digitized
version of each sequence object is then used to simulate its effect on the sam-
ple. By traversing the sequence tree, the simulation is performed in the same
order as the sequence objects would be played out on a real NMR device.
An exact solution of the Bloch equations for piecewise constant fields [13]
is utilized for the calculation: It transforms the magnetization vector at each
point of the sample recursively according to the set of values within the dig-
itized arrays of the sequence object. During acquisition periods, a virtual
NMR signal is generated by integrating over the transverse component of the
magnetization vector for all points within the virtual sample. The result of the
simulation is then a synthetic NMR signal that can be post-processed with the
same algorithm as the real signal would be processed.

This simulation strategy is most useful for analyzing imaging sequences.
Because it is limited to ensembles of isochromatic spins with single-quantum
coherences and interactions simplified by 77 and 7%, other tools [14-16] are
more appropriate to generate virtual spectra of samples with different nuclei,
to simulate higher-order quantum coherences or explicit interactions. An-
other limitation is given by the finite spatial size of the volume elements:
The simulation does not account for static intra-voxel dephasing due to field
inhomogeneities (7%).
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6 Data Processing

In a typical NMR experiment, the RF signal that is induced by the magne-
tization of the sample and received by the coil is post-processed to obtain
interpretable data. This can be a frequency analysis for spectroscopic applica-
tions or the reconstruction of spatially resolved parameter maps for imaging.
In general, the data processing algorithm is specific to the NMR sequence
which was used to acquire the raw data. This step is supported by a software
layer that integrates external numerical libraries consistently into ODIN.
After the measurement, the raw data is processed by a function of the same
sequence module that was used for the experiment. Because this function is
implemented as a C++ member function, all parameters of the measurement
are directly accessible. The external numerical libraries can be used within
this function. After the processing step, the final data is written back to disk.

6.1 Integration of External Libraries

As a basis for further integration of external libraries into ODIN, the expres-
sion-template based multidimensional array type provided by the Blitz++-
library [17] is used to hold the NMR data during the different processing
steps. Many useful functions that operate on multidimensional arrays are
already made available by Blitz++. However, more complex numerical oper-
ations must be added separately as they are not part of Blitz++. Therefore, an
interface to the following libraries has been implemented so that they always
operate on the array type of Blitz++ and add the described functionality to it:
— NewMat [18]: Supports various matrix types and matrix calculations.
— GSL (GNU Scientific Library) [19]: Non-linear least-square fitting, inter-
polation.
— FFTW (Fastest Fourier Transform in the West) [20]: Fourier transform for
multidimensional arrays.
For example, an FFT of arrays with arbitrary dimensionality can be pro-
grammed in one line of C++-code with this integration of external libraries:
blitz_fftw(data(all,0,all));

This instruction will perform a complex in-place FFT over the first and third
dimension of the array data for all values with index 0 in the second dimen-
sion.

6.2 Processing of Large Data Files

When dealing with large datasets, e.g. for functional imaging, the problem
arises that the whole record cannot be held in memory for analysis at once.
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Splitting the file into blocks and processing them separately is therefore nec-
essary. ODIN supports this technique by read and write functions that trans-
parently iterate through the whole dataset. The programmer only needs to
specify the operation for one block. When looping over this operation, ODIN
will then read and write the appropriate block.

7 Experiments

Two sequences were executed with the same subject and the same settings
on platform A and B. Figure 7 shows the reconstructed images from a power-
reduced variant of the modified driven equilibrium Fourier transform
(MDEFT) sequence [21]. Although the position of the brain within the slice
differs due to different positioning of the subject within the magnet, both
images show the same spatial pattern and comparable contrast with a signal-
to-noise ratio of 30.5 (platform A) and 25.1 (platform B) in white matter.

In Fig. 8 the spin-echo EPI [22] experiments are compared with the result
of a simulation which was performed using high-resolution maps of the NMR
parameters (spin density, 17, T5 and frequency offset). These maps were ac-
quired on platform A during the same session. The simulation was then car-
ried out off-line on a Linux PC to generate a synthetic signal using the same
sequence code that was used for the measurements. The images are similar in
terms of contrast and image quality, but show slightly different field-of-views
in phase encoding direction which is very sensitive to frequency offsets due to
the small bandwidth. The mismatch may therefore be caused by non-optimal
compensation of the field inhomogeneities (shimming) or eddy-currents mod-
ifying the phase encoding blips. This otherwise undesired discrepancy could
be used here to study the effects of field variations and gradient imperfec-
tions. However, the general similarities between the result of the simulation
and the actual experiments indicate that the simulation can be used to repro-
duce the measurement and that it is feasible to develop and test sequences on
a stand-alone platform.

8 Availability and Licensing
The software package is published under the terms of the GNU General Pub-
lic License. It can be obtained as source code and binary packages for dif-

ferent platforms (Linux, IRIX, Windows, VxWorks) from the web [23]. The
online manual for the class hierarchy can also be found at this location.
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Fig. 7: MDEFT images from platform A (top) and B (bottom) with a matrix size of 252 X 252
pixels, FOV = 220 mm and a sweep-width of 25 kHz. This sequence type is highly sensitive to
the T relaxation time. Therefore it is well-suited to display anatomical structures.
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Fig. 8: Spin-echo EPI images from platform A (top), platform B (middle) and the simulation
(bottom) with a matrix size of 64 x 64, 100 accumulations, 100 kHz sweep-width and the same
slices as in Fig. 7. The phase encoding direction is aligned vertically.
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9 Conclusion

It has been demonstrated that ODIN is a valuable tool when developing and
testing NMR sequences. The sequence programming interface provides a
concise C++ class hierarchy to set up an NMR experiment within a short
time. Without changing the source code, the sequence can be visualized, sim-
ulated and executed on different NMR hardware. This is particularly useful
in laboratories where more than one scanner exists, or to exchange sequences
between research facilities with different hardware infrastructure. With the
ODIN data processing framework, a consistent interface to reliable open-
source libraries for calculating the final data is provided. The internal rep-
resentation of the experiment by the sequence tree is adequately matched to
the application domain and allows easy extensibility when porting the frame-
work to new platforms.
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Abstract

VINCI (“Volume Imaging in Neurological Research, Co-Registration and ROIs included”) was
designed for the visualization and analysis of volume data generated by medical tomographical
systems with special emphasis on the needs for brain imaging with Positron Emission
Tomography (PET). VINCI is highly modular, extensible, compact and runs well on current
PCs, no installation is required. We achieve this with a plugin architecture; VINCI can be
remotely controlled through several high-level language interfaces, at the basis of which is our
own XML-based scripting language. VINCI is entirely true color based and allows online fusion
and contour rendering of several images, more than 50 studies can be displayed simultaneously
in orthogonal views on current machines. We also have a fully automatic registration tool
which is suitable for routine usage and gives online feedback of a running registration.

1. Introduction

Modern brain imaging is multidimensional in many respects. Data sets are
volume data sets rather than planar images, and they can be very volu-
minous. Thus, there are three basic spatial dimensions, and imaging
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software needs to provide convenient means to represent that in an intuitive
and representative way as multiple planes (typically oriented in parallel or
orthogonally). Additional dimensions are along the time axis (from dynamic
data acquisition or multiple follow-up studies in the same subject), or
representing multiple modalities (different PET or SPECT tracers, different
MRI acquisition protocols), or data stemming from a sample of different
subjects’ brains (represented as individuals or as statistical parametric
images derived from the sample).

These various additional dimensions imply special demands for efficient
processing and display. Accurate spatial alignment of data sets that were re-
corded from the same brain, usually called co-registration, is a prerequisite
and the software needs to provide tools to achieve that in a fast, robust and
reproducible way. Some data sets will represent primarily structural
information (where borders between anatomical structures or delineating le-
sions carry the essential information), whereas others will represent
primarily quantitative information (functional images, where voxel values
carry the essential information). Typically, these two types of images need
to be displayed together as closely as possible to assign the quantitative data
to anatomical structures or lesions. Biological analysis of quantitative data
requires statistics based on the investigation of multiple subjects.
Quantitative values can either be obtained by extraction from anatomically
defined volumes of interest (VOIs, based on co-registered structural and
quantitative images), or on a voxel-by-voxel basis as statistical parametric
images after some spatial normalization of different brain shapes to a
common template. Thus, the software also needs to provide means for VOI
placement and evaluation as well as for interindividual registration and
mathematical transformation of images.

A more recent field of research with rapidly growing impact is Molecular
Imaging: using multi-tracer animal studies on high-resolution PET systems,
it allows a non-invasive characterization of endogenous molecular markers.
Co-registration of these PET images with high-resolution MRI data sets is
even more demanding (more image artefacts, small movements of animals):
it requires elaborate support for manual intervention, also the ability to
compare, view and analyze several different studies simultaneously.

Another important usage for a general imaging package is display and
analysis of raw and calibration data from PET scanners. This is essential to
locate potential hardware failures and find problems that have lead to
artefacts in the reconstructed image data.

2. Previous and Related Work

The MPI-Tool (“Multi Purpose Imaging Tool”) is a visualization package
previously developed at our institute ([2], [3]). It has pioneered several
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aspects of manual co-registration for multi-modality imaging and was
primarily developed for older versions of Solaris. Since 1998 it is available
commercially, also for the Linux platform, [4].

With the introduction of our new HRRT (High Resolution Research
Tomograph) system in 1999, it was felt that an entirely new design for a
general visualization and co-registration package was needed, addressing
new challenges and shortcomings of previous work, e.g. a more flexible
architecture with plugins, fully automatic co-registration, export of vector
graphics and true color support, improved handling of increased image data
sizes, scripting and remote control. VINCI was first presented as a
visualization tool for HRRT data [6], as its true color engine was originally
conceived for online display (separate thread on multi-processor systems) of
a running reconstruction [7], [8].

VINCI can import protocol files of the older MPI-tool, we have also kept
the reslicing engine compatible.

Another software package developed here for multi-modality imaging,
especially for surface rendering of co-registered functional and structural
images and interactive definition of VOlIs, is the 3D-Tool, [5]: VINCI can
read objects/regions defined in its volume definition file format and display
them as fusion overlay.

3. Implementation and Design Goals

This section describes the VINCI framework we have conceived for
scripting, communication between different components of VINCI and
remote control. We also explain the circumstances that have motivated
some design decisions.

3.1. General Concepts and Definitions

VINCI supports an arbitrary number of image buffers: a system’s physical
memory and the choice of data sets will limit the amount of buffers one can
effectively use. Usually data from one image file will be assigned to one
buffer. It can then be used by several modules for graphical display or
analysis, e.g., one might have it displayed in two different OrthoView
widgets and in a PlanesView at the same time.

A VinciProject comprises any number of image buffers with reslicing
and color settings, OrthoViews, PlanesViews, PlotViews and the respective
widget settings (options, window sizes and positions). Each Project has an
unambiguous name and is associated with a file from which the Project can
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be restored in a later session. Within one instance of VINCI one can work on
several Projects at the same time.

Each image buffer has reslicing and color properties that will be
consistent for one entire Project: changes to either reslicing or color
properties of one image buffer affect (in most cases immediately) all
displays and tools.

3.2.  Choice of Platform and Languages

We are actively involved in the development of our PET scanners, so it was
mandatory that we follow the manufacturer’s preference of platform: this
explains a general shift from Solaris 2.6 (the platform favoured by previous
generations of PET scanners) to MS Windows NT/2000/XP in the
institute’s IT infrastructure.

We try to use platform-independent standards throughout large portions
of VINCI, a good example being the plugin for fully automatic co-
registration: the registration engine is also available in a non-interactive
version for Solaris and Linux systems using the same XML-based format to
describe registration jobs. Furthermore, VINCI’s framework is based on an
entirely platform independent concept (VRegistry and XML-based
VinciScript).

Similar to a software architecture employed by Wolfram Research’s
Mathematica package [9], we have a non-GUI backend which is mostly
platform independent. For performance reasons and flexibility, we have
chosen to use C++ as the principal language for development. When
development started in 1998, for the same reasons, MS Window’s native
MFC with C++ was the obvious choice for the GUI: clinical routine and
several research applications require VINCI to have a highly optimized and
customized user frontend, something that is notoriously difficult to do with
toolkits for platform independent GUIs (with the notable exception of Qt,
which was lacking much of its current attractiveness when we first
evaluated it in 1999).

We find Linux an excellent platform for our online update service and we
use HTML templates without browser or platform specific additions for
displaying header and status information.

3.3. Build Process

We are approaching 200,000 lines of source code (including comments) for
VINCI and the co-registration plugin. In order to manage this amount of
code at a level required for routine usage, especially with a view to team
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work and international collaboration, it was instrumental to adopt several
standard practices for software development and testing, an excellent
summary of which we have found in [11].

As VINCI is shipped with the HRRT PET system which is used in a
clinical setting, the manufacturer requires a certain level of certification
related to the quality assurance of software now that the HRRT is no longer
a prototype.

» Source Code Repository: all code, documentation and test data is checked
into MS SourceSafe which is integrated into MS Visual Studio 7.1.
Accessing the source code repository from outside the institute’s network
is done frequently using VPN connections through our Checkpoint
firewall.

+ All changes to code, documentation and test data can be retrieved from
the repository for any stage of the development process.

e Fully automated build process: all binaries are built using the latest
versions of sources from the repository and then subjected to a number of
automated tests, the result of which is summarized and sent by Email to
the developers.

* C++ specific documentation (class hierarchies, dependencies and our
comments) is automatically created by Doxygen, [12], in the format of an
HTML tree which is subsequently packaged into one compressed HTML
file.

* A PERL script extracts documentation for VinciScript commands from
the sources and assembles the output into another compressed HTML
file.

* A successully tested new release is automatically packaged and
versioned. The result is ready for manual or automated installation.

* We keep a detailed version history which is included with every
installation.

3.4. Installation

VINCI will run immediately on all current Windows versions (NT/2000/XP),
no installation is required. However, we also provide an installer which
mostly contains an engine for decompression of zip-files and creates
shortcuts on the desktop and in the programs menu. As VINCI does not rely
on external toolkits, frameworks or libraries other than MFC (this is not
necessarily true for third party plugins) a full distribution is contained in a
3.3 MB size installer.
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We have derived our installer from the NSIS installer engine, [13], which is
extremely fast and compact: it carries almost no overhead compared to the
compressed size of the distribution’s directory.

A popular way to install software for several systems on a network is to
use a shared directory on a file server. Provided the server’s availability is
satisfactory, this has proved to be a good solution for software that is static
for longer periods of time. Compared to the size of current PC disks,VINCI’s
small footprint is negligible which has allowed us to pursue a more flexible
strategy:

+ VINCI is installed locally on each system. This policy also eliminates
problems for laptops and, more general, installations outside the
institute’s network.

* We have added functionality for remote network installation, so several
machines can be updated in an automated fashion. We support
concurrent use of multiple versions of VINCI: each distribution is self-
contained and independent.

+ As installation is safe, easy and fast we can and have published releases
frequently (about once per week), reacting quickly to bug reports and
feature requests.

3.5. Online Update

We have developed a one-click online update mechanism: a separate update
process is spawned that kills running instances of VINCI and contacts the
update server in the institute’s DMZ. After sending authentication and site
specific license information, it transfers the current installer binary and
launches a silent (non-GUI) default installation. Within the institute a full
update takes less than 4 seconds, with a DSL-type connection it typically
takes around half a minute.

The update service has been implemented on a Linux system using http
(cgi) for communication and ftp for the transfer. Authentication and logging
are handled by PERL scripts, command and control is XML-based.

3.6.  Plugins

An important part of VINCI’s architecture is the concept of plugins to easily
add new functionality in certain, well-defined contexts. By design, plugins
only require knowledge of a small (public) subset of VINCI's framework.
They are easy-to-use and maintain and thus are very suitable for third- party
developers. At startup, VINCI scans its bin directory for files containing
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plugins. A plugin is basically a DLL that defines an arbitrary number of
classes derived from CVinci_Plugin. VINCI will try to call the mandatory
function RegisterLocalPlugins() which creates instances of each plu-
gin that should be active and adds them to a global list.

We have defined several types of plugins, the most important being the
plugins for adding import filters. VINCI supports several very different file
formats, among them ECAT7, Analyze, MINC, Howmedica Leibinger
(used by neurosurgery guidance systems) and the native file types of the
HRRT and microPET scanner families.

Another type of plugin works on the image buffers of an OrthoView
(OrthoTool Plugins, e.g. MMM, the registration plugin or the 3D-Gauss-
filter).

The global list of plugins is then used to assemble the file format or tool-
box menu at runtime. We have found [14] and [15] helpful in deciding how
to minimize dependencies between VINCI’s components.

Loading a particular kind of image data requires a suitable Load Plugin.
Starting from a generalized sample plugin we provide, it is basically suffi-
cient to implement the functions IsThisMyFileFormat() so VINCI can
cycle through the list of all available load plugins to automatically select a
suitable handler if it is supposed to make an educated guess, e.g. when a file
has been dropped on it from the Explorer. For adapting the other mandatory
function, LoadSpecificFileFormat(), to a particular type of image
data, little knowledge about VINCT’s internals is needed. Adding an optional
user interface only requires implementing a standard CDialog of arbitrary
size. Load Plugins are embedded in the LoadView widget, see Fig. 1 for an
example.

The OrthoTool Plugins are activated through an OrthoToolBox: each
toolbox has a target display which is the default candidate for manipula-
tions. Creating a plugin of this kind is very similar to writing a load plugin;
the toolbox automatically adjusts to the size of the plugin’s user interface, s.
Figs. 2, 3 and 5 for examples. Each OrthoView can have an arbitrary num-
ber of toolboxes associated with it, several tools can be associated with each
OrthoDisplay.

3.7. VinciScript

We realized at an early development stage that scripting, or, in general, a
(type) safe and easy way to exchange messages between VINCI’S objects
was desirable. The heart of which is a global entity, VRegistry, that main-
tains a flat namespace (using a hash for efficiency) where each object of
class CVinci_XMLTarget is automatically registered with a unique name
on instantiation that also reflects heritage between objects, e.g.
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::Project_0O::LoadView
to identify the LoadView of the first VinciProject (s.b.), or
::Project_1::0rthoView_1::ToolBox_ 3

::Image Volume Filter_0O
to refer to an image filter tool owned by a certain toolbox that belongs to the
second OrthoView. Each CVinci_XMLTarget has a handler to process
XML-based commands, VinciScript, addressed to it. We provide a large
number of methods to navigate the VRegistry’s namespace and to send
messages safely: by checking the address range and a magic function first,
we make sure objects are valid before they are accessed.

Processing of VinciScript has been optimized: top-level XML-commands
are delegated to a hash-based handler (which also automatically processes
several special commands, see next section) and we can mostly use our own
XML parser, an iterator, which is easy to use, compact and very fast
because it only needs to understand a small subset of XML (one level only,
no attributes).

3.8.  VinciProject and Validation

A VinciProject in many ways resembles the document part of a Document-
View framework. To stay with that terminology, we have implemented a
multi-document interface: several VinciProjects can be opened in one ses-
sion, the context is defined by the heritage of the top-most window.

Any VinciProject file consists of ParameterSection blocks, which
contain VinciScript that is addressed to a particular target. The project par-
ser treats the sections as black boxes and dispatches the commands to the
specified targets. The meaning of some special tags (New, Del, Create,
Action, Current) can be deduced from several example scripts.

Each VinciProject is signed with a MDS5 checksum: if it has been edited
outside of VINCI, a warning message will be issued. We also save MDS5
fingerprints of image data referred to in the project file. Thus we can ensure
the fidelity of VinciProjects which have been relocated, e.g. from an insti-
tute’s network with central file servers to a laptop (USB stick) for external
presentations using VINCI’S “Pack and Go” manager.

3.9. Remote Control, High-Level Interface

The project parser in conjunction with VinciScript is a good basis for
scripting VINCI. Remotely controlling one or more instances of VINCI only
requires one more ingredient: a means for inter-process communication. We
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have chosen to use named pipes: they have a sound UNIX heritage, are ro-
bust and efficient.

Several examples in the external-directory of a VINCI distribution
show how VINCI can be controlled remotely by programs written in C/C++,
IDL and PERL. In a standard installation of a VINCI distribution, we run a
post-install program (see Postlnstall.xml in VINCI's bin-directory) to
adjust the one statement that links an external program to one particular
VINCI distribution.

We provide a number of higher-level routines that conveniently summa-
rize several VinciScript commands and also allow fast, diskless transfer of
binary data from an instance of Vinci to the external C/C++/IDL program,
and back.

We find IDL particularly suitable to use with VINCI because we were
able to put a lot of consistency checks into our library, the language is easy
to learn and very popular with researchers involved with tomography.

3.10. Automated Tests, Online Tutorial

We have learned to appreciate automated tests as an integral part of the
build process. Testing non-GUI backends is mostly a straight-forward task
in our case: we have conceived literally hundreds of tests that compare test
answers to “manually” validated reference data and report differences.

However, testing complex user interfaces is generally a much more
demanding issue. We have started to enhance our framework with function-
ality found in macro-recorders: VINCI keeps track of (high-level) user
actions (changing color settings, opening a toolbox, changing reslicing set-
tings, manipulating ROIs, etc.) and can play them back. This is very differ-
ent from hooking into mouse and keyboard drivers and playing them back
as low-level events (an approach favoured by many APIs for automated
tests).

When recording a test sequence, VINCI creates a number of files with
state information about recent operations. Replaying the sequence during an
automated test, creates a new set of files which are compared (using MDS5
checksums) to data generated during a supervised reference run.

We have compiled a CD-ROM that contains a ready-to-run distribution
of VINCI, some demonstration data and an interactive tutorial (demo). The
latter is largely a by-product of our efforts with automated tests and does
not involve Macromind Director or any such product.
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3.11. Multi-stage Undo/Redo

Another by-product of our efforts for automated tests is VINCI’s Protocol

widget. Similar to Adobe Photoshop’s History feature, it lists recorded
actions eligible for Undo and Redo operations. The screenshot in Fig. 5
shows a typical listing, green entries can be redone, clicking any entry of
the list will undo or redo all steps back or forward to that stage—which is
helpful for manual co-registration.

3.12. Graphics

VINCI is entirely true color based which eliminates a number of complica-
tions and limitations compared to systems relying on 8-bit indexed colors.
The true color engine is built around a small number of comparatively low-
level blitting functions which are supported by all graphics boards for the
MS Windows platform. VINCI offers live (immediate feedback) fusion
overlay for up to four images, see Figs. 2 and 6 for a fusion of two images.
A Palette Editor is included which can be accessed through the color plugin
and allows to create new color palettes. All builtin palettes are encoded
(XML) using interpolation markers and can be customized.

VINCI can export graphics through the clipboard (a particular OrthoDis-
play, a PlanesDisplay, Scatter Plots, a color bar) retaining vector properties
(text can still be edited) or as bitmaps rendered at a higher resolution to
minimize aliasing. The former is especially useful if working with MS
Powerpoint, OpenOffice Presentation or Adobe Illustrator to create posters.

Our reslicer supports several rendering modes: depending on the dimen-
sions of the original image and the display size, a 3D-interpolation (trilin-
ear, next neighbour) can be followed by a 2D-interpolation (linear, bicubic
and high resolution cubic spline, [10]). For viewing and analysis of scanner
raw data, we also support a “pixel native” mode (dubbed TruePixel mode):
it guarantees to reslice parallel to the image volume’s native axes only (no
interpolation), 2D-rendering, if necessary, is limited to pixel reduplicaton.

3.13. Printing/pdf, MS Excel/OpenOffice support, Online help

You can print OrthoViews and PlanesViews directly to any printer sup-
ported by MS Windows. The layout can be customized with some XML-
based configuration files: PR*.xml in VINCI’s temp late- directory. By
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default, the layout includes information automatically inserted from the im-
age file and the institute’s logo (vector graphic).

If Acrobat Distiller (or any similar printer driver) is installed, VINCI can
generate high-quality electronic documentation (pdf) by simply printing to
the Distiller printer driver.

Several tools generate table-type output, e.g. the ROIReport which
evaluates ROIs in several scopes (project, OrthoView, OrthoDisplay) over
several frames or files, or the Time Activity Curve tool. VINCI can write
native file formats for MS Excel and OpenOffice Spreadsheet using an
XML template-driven approach which allows predefined layouts with style
and type attributes (thus numbers will be interpreted correctly regardless of
a system’s locale).

VINCI has a “one-source” online help system: the online manual is writ-
ten with Adobe FrameMaker and then converted to compressed HTML
using Webworks Publisher Pro with a customized rule base, or saved as pdf.

3.14. Optimization

We have been using the Intel compiler plugin, [17], since version 5.0 for
validation and debugging. Several optimization options are now also avail-
able with MS Visual Studio 7.1 and have given us a significant speed gain
for co-registration, using Pentium IV specific optimization for vectorization.

3.15. UNIX support

Our institute has a heterogeneous IT-infrastructure (Solaris 2.6/7/8, Linux
Suse 7/9/Red Hat, Windows NT/2000/XP). Several central file systems are
(traditionally) served by Solaris machines running Samba which is a popu-
lar and mostly efficient solution to share data between UNIX workstations
and PCs. We use NIS+ to manage network wide (virtual) directories.

VINCI uses a rule based approach to map UNIX file names to Samba
paths. Text in clipboards can optionally be converted to UNIX line endings.

Clipboard export also works for OpenOffice Presentation and Text, as
does writing of native OpenOffice spreadsheet files (s.a.). OpenOffice files
can then be processed on several UNIX platforms.

4. Fully Automatic Co-Registration (MMM-Plugin)

The general principle of the registration algorithm is an iterative search for a
transformation that optimizes a similarity measure of alignment of two
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image volumes. We consider (a) rigid-body transformations for multi-mo-
dality intra-subject registration and (b) non-linear deformations for inter-
subject spatial normalization.

Method (a) is, e.g., needed for co-registration of a PET-study and a MR-
study of the same patient to fuse anatomical and functional information into
one image for diagnostic purposes, see Fig. 6 for an example. Method (b)
allows to transform image data of one patient into a standardized image
space for statistical analysis (another Vinci plugin), e.g. comparisons with
collectives of control studies.

The similarity measure of choice for co-registration of images from
different modalities (method (a): MRI-CT or MR-PET) is Mutual Informa-
tion (MI) which has proven to be a very reliable and precise criterion, [19].
For method (b) we use a hierarchical subdivision of the first image volume
into blocks that are individually co-registered using affine transformations
to the corresponding blocks of the second image volume. The resulting
transformation is interpolated between those blocks.

For optimization of the similarity measure we use the downhill simplex
optimization method, [20]. We have implemented this in a multi-scale
approach (coarse-to-fine optimization) which reduces the computational
demand significantly without loss of accuracy.

To further improve robustness and speed of the registration process, we
evaluate different techniques for automatic masking of non-brain voxels
(intensity thresholding using a image histogram, morphological operations,
[21]).

The Multi Modality Matching Tool (MMM) is used routinely at the
institute for a number of co-registration tasks. As mentioned in section 3.2,
the registration engine is also available in a non-interactive version for So-
laris and Linux systems using the same XML-based format to describe reg-
istration jobs. BeeQ, the queue manager we developed for the HeinzelClus-
ter [8], is well suited to run these registration jobs on several servers in a
user-friendly and controlled way.

5. Outlook

VINCI is the standard visualization tool for the HRRT brain scanner, [1]. It
is already being used routinely in multi-modality environments and can be
easily adapted to new challenges due to its modular architecture.

With newly introduced indexed volumes in VINCI, we provide accurate
quantitation for current and future molecular imaging techniques making
use of regions and volumes of interest. Interest in further commercial distri-
bution of our software for scientific and clinical applications has been
expressed by several parties.
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