
Oliver Schmitt
Andreas Siemon

Ulrich Schwardmann
 Marcel Hellkamp

GWDG Object Storage and
Search Solution for Research

Common Data Storage
Architecture (CDSTAR)

BERICHT
78

Oliver Schmitt
Andreas Siemon

Ulrich Schwardmann
Marcel Hellkamp

GWDG Object Storage and
Search Solution for Research

Common Data Storage
Architecture (CDSTAR)

GWDG-Bericht Nr. 78
Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

Impressum

Gesellschaft für wissenschaftliche Telefon: 0551 201-1510
Datenverarbeitung mbH Göttingen Telefax: 0551 201-2150
Am Faßberg 11 E-Mail: gwdg@gwdg.de
37077 Göttingen WWW: www.gwdg.de

© 2014 ISSN 0176-2516
www.gwdg.de/gwdg-berichte
Titelbild: © karelnoppe – Fotolia.com

Table of Contents
TABLE OF CONTENTS .. 1
1 INTRODUCTION ... 3
2 FEATURES ... 7
2.1 Data Hub and Storage ... 7
2.2 Management of structured and unstructured Data and its Metadata . 8
2.3 Enterprise-grade Object Search and Information Retrieval in Science 8
2.4 Securing the Access to Object Storage .. 9

2.4.1 Roles and Permissions .. 9
2.4.2 Integration with Identity Management 10

3 TECHNICAL DOCUMENTATION ... 11
3.1 Current Version of the System ... 11
3.2 Core Concepts of GWDG CDSTAR .. 11
3.3 Service-Routes .. 12
3.4 Types of CRUD Operations and API Calls 14

3.4.1 Synchronous Transfer with POST/PUT 15
3.4.2 Asynchronous Transfer with POST/PUT 15
3.4.3 Synchronous Processing of DELETE ... 15
3.4.4 Asynchronous Processing of DELETE 16

3.5 Locking and concurrent Access ... 16
3.6 Timestamping of Objects .. 17
3.7 REST Operations ... 17

3.7.1 Objects .. 17
3.7.1.1 CREATE .. 17
3.7.1.2 READ.. 18
3.7.1.3 UPDATE ... 21
3.7.1.4 DELETE .. 21

3.7.2 Bitstreams ... 23
3.7.2.1 CREATE .. 23
3.7.2.2 READ.. 25
3.7.2.3 UPDATE ... 27
3.7.2.4 DELETE .. 29

3.7.3 Metadata ... 31
3.7.3.1 CREATE .. 32
3.7.3.2 READ.. 34
3.7.3.3 UPDATE ... 36
3.7.3.4 DELETE .. 38

1

3.7.4 Search ... 40
3.7.4.1 Specify Search Sources.. 40
3.7.4.2 Formulate Search Queries .. 41
3.7.4.3 Search on full text index and metadata 42
3.7.4.4 Search on metadata only .. 44

3.7.5 Collections ... 45
3.7.5.1 Introduction .. 45
3.7.5.2 CREATE .. 46
3.7.5.3 READ Collection Object ... 47
3.7.5.4 READ Collection Content ... 47
3.7.5.5 UPDATE ... 49
3.7.5.6 DELETE .. 51

3.7.6 Object Permissions ... 52
3.7.6.1 READ.. 53
3.7.6.2 SET ... 55

3.7.7 DARIAH Storage API ... 57
3.7.8 Landing Pages ... 57

4 CONCLUSION .. 61
5 CONTACT .. 62
6 ACKNOWLEDGEMENTS .. 63
7 LITERATURE .. 64

2

1 Introduction
This report describes CDSTAR, which is GWDG's system for storing and
searching objects in research projects. The goal of the project is to provide a
storage system for structured and unstructured data. One of our main as-
sumptions is that the data originates from research projects with diverse sci-
entific backgrounds. The use cases that provide the requirements for
CDSTAR span digital humanities, astronomy, and medical information man-
agement. The goal of CDSTAR is to provide an easy-to-use storage system
that can store, modify, annotate, search, and access a large amounts of di-
verse data.

The amount of data is growing rapidly in all disciplines of science. In many
areas the number of relations between data and resources become an essen-
tial factor for successful research. Therefore it is necessary to develop strat-
egies for science and research to safeguard and resuse unique data, to con-
serve relationships in the data, and to verify research results. To realize these
strategies, research data has to be loaded into an information system, which
can cover the entire data lifecycle. Additionally data availability and persistent
identifiers need to be provided for long periods, during which hardware and
software infrastructures are subject to change. Thus appropriate abstraction
layers and sustainable service interfaces that follow open industry standards
are a necessary choice.

To ensure technological sustainability not only in the frontend, which faces
the clients, but also in the backend, CDSTAR builds on Cloud technologies.
As such it complements GWDG's Compute Cloud with an elastic storage ser-
vice. Thus CDSTAR can be compared to a number of popular commercial
storage services. CDSTAR mimics Amazon S3 [1] and Microsoft Azure Blob

Storage [2] but has been tailored to the needs of data management in science
and research and thus supports the requirements for good scientific practice
[3]. CDSTAR also integrates an enterprise-grade search engine that operates
on metadata and full text. This search engine indexes a wide range of file
formats, including PDF-files, Microsoft Office files, XML-documents, ar-
chives, video, and audio files (over 40 major formats) [4]. All functions of

GWDG CDSTAR can be accessed through its RESTful-interface [5]. As a con-
sequence CDSTAR can be used by many programming platforms and pro-
gramming languages, such as desktop clients, HTML5-applications, tradi-
tional web-applications, mobile clients for iOS and Android, command line
tools, and enterprise portals. With its RESTful-interface CDSTAR is a good

3

integration platform to connect applications such as web applications, desk-
top applications, and even mobile applications. GWDG CDSTAR can be used
as long term archive, as data integration platform or as application storage for
applications in science and research.

Object Storage and Search – Ready for Science and Research

The GWDG has built a custom object storage solution for science and re-
search. This solution addresses the specific requirements of research data
management according to the good scientific practice. This integrates the
ability of storing metadata along the research data in a flexible metadata
schema that can be tailored for the specific use in different scientific disci-
plines. Additionally the data that are stored in GWDG CDSTAR can be regis-
tered automatically at the EPIC Persistent Identifier (PID) service [6], where
one instance is hosted at the GWDG. The EPIC service gives data sets a
unique, globally resolvable identifier as an additional abstraction layer that al-
lows citing data sets in scientific publication. A role-based security concept
allows the protection of data sets with an individual set of permissions and
rights for each user. User identification can be integrated within the GWDG
identity management, application specific user data bases or LDAP [7]. This
allows the creation of single-sign-on scenarios and a smooth operation be-
tween scientific applications and the GWDG CDSTAR.

GWDG CDSTAR object storage allows the usage of different storage scenar-
ios starting from small data sets to large data sets. In contrast to generic in-
dustry offered object storages such as Amazon S3, the GWDG object storage
allows the researchers to have a solution for their specific needs. The GWDG
offers a set of storage backend that let customers select different venues for
data storage, back scenarios and replication to remote data centers of the
GWDG or partner data centers. Although CDSTAR follows the cloud para-
digm, the researcher has control over its data and can use this storage solu-
tion to store and search its data.

4

Figure 1: GWDG CDSTAR features

Supporting Research Data

GWDG CDSTAR covers all phases of research data management. Scientific
data can be uploaded, read, updated and deleted through the REST-interface
under the usage HTTP (Hyper Text Transfer Protocol) [7], an open well-sup-
ported transfer protocol, that is integrated in most programming languages
and software frameworks. As scientific data needs to be enriched with de-
scriptions such as author, time, date, parameters or settings of equipment,
rigs or experiments, GWDG CDSTAR allow a metadata annotation of each
data set. The JSON-based (JavaScript Object Notation) [9] metadata schema
and handling allows a flexible support of research use cases and an iterative
development of metadata schema. GWDG STAR automatically assigns Per-
sistent Identifiers (PID) to data sets in order to make them citable in scientific
papers. So research data sets and results can be published to the internet
with one mouse click and can be retrieved via the international Handle-pow-
ered PID system. But GWDG CDSTAR also handles the end of the data life
cycle, where data may be deleted or archived on tape for long term preserva-
tion. To archive this, research data and associated metadata sets stored in
GWDG CDSTAR can be transferred into the GWDG archive system as com-
pact data objects consisting of files, JSON-formatted metadata and infor-
mation about file owners and original permissions. The use of JSON data for-

Metadata

Research Data

File / Metadata access

Enterprise Search

5

matting ensures a long-term usage and reuse of data in future research pro-
jects. Also a selective data deletion is possible that can be defined by multi-
criteria selection, such as object size, age or author.

The remainder of the document is structured as follows. Section 2 presents
the main features of CDSTAR. Section 3 provides a technical documentation
including a detailed description of CDSTAR's RESTful interface. Section 4 con-
cludes this report by analysing its main results.

Figure 2: Research data management cycle [9]

• create
• read
• update
• delete

Data
Management

Data

Search/
aggregation Meta-

data

PID

Disposition

• create
• read
• update
• delete

• citable
• publish
• long-term

preservation

• search
• aggregate

• archiving
• deletion

6

2 Features

2.1 Data Hub and Storage
GWDG CDSTAR object storage is an abstraction of storage systems such as
hard disks, cloud storage or specialized scientific research data repositories.
GWDG CDSTAR offers a unique lightweight REST interface to access differ-
ent data storage technologies. This allows an access from different applica-
tions such as web applications, desktop clients or mobile applications. GWDG
CDSTAR is the central data hub for research data management. The CDSTAR
server component has access to data backend of choice, suitable for scientific
use cases, concerning data size, backup plan, replication, metadata handling
or data processing. With choosing CDSTAR researchers can benefit from
iRODS [9] as scientific data repository software that allows replication of data
to our partner data centers without integrating the iRODS client software. You
can also benefit of using the GWDG storage solution for large data sets with
caring less about storage space, backup or outsourcing to tape.

Figure 3: GWDG CDSTAR as data hub

GWDG PID-Service

LDAP

Central User
Directory

GWDG CDSTAR

Web Applications Desktop Applications Mobile Applications

iRODS Cloud Storage Network Storage

7

GWDG CDSTAR can also use LDAP servers for user authentication. Hence,
user accounts can be used from existing applications or GWDG accounts can
be used for data access.

2.2 Management of structured and unstruc-
tured Data and its Metadata

GWDG CDSTAR is able to handle all kind of formats and data structures [4].
Research data that is strictly structured with XML is also processed such as
semi- or unstructured data. The object store is able to store and retrieve all
kind of file formats. File formats that can be parsed by the search engine are
incorporated into the full-text enabled search index. Metadata is processed
by CDSTAR and all its components in the JSON-format. This means that re-
search metadata can be structured in an easy understandable and readable
way. The generation of JSON is possible out of XML or any other file format
by using standard libraries that are integrated in almost all programming lan-
guages or frameworks. So the difficult task of aligning metadata formats from
the research application to the data management system has been made
easy with GWDG CDSTAR.

2.3 Enterprise-grade Object Search and Infor-
mation Retrieval in Science

GWDG CDSTAR also features a very powerful enterprise search for research
data and metadata that is fast, scalable and allows users to get new insights
into research data. The Enterprise search uses big data technology to scan
uploaded data and metadata in real-time for full text content recognition and
search over structured metadata. The search engines uses the metadata as-
sociated to the research data for creating search results and also incorporates
results from the full-text search. The search engine can be queried also via
the REST-interface to create sophisticated search queries. With GWDG
CDSTAR researchers and information system providers do not only have an
object store, they also give the users the possibility to explore existing data
and to find data sets. The search engine itself uses industry proven-compo-
nents that delivery high performance by answering even complex search que-
ries. The search index is also updated in real-time, when data have been up-
loaded, changed or deleted. With the fast-responsive search engine, usage
scenarios as search-as-you-type or recommendation system can be imple-
mented into new and existing scientific application without hassle.

8

Figure 4: GWDG CDSTAR enterprise search over research data

2.4 Securing the Access to Object Storage
GWDG CDSTAR allows the usage of different mechanism to secure data,
metadata and data aggregations. This allows a flexible usage of data accord-
ing to the need of your organization or project for secure data access and the
integration into existing application environments with existing role and data
access policies.

2.4.1 Roles and Permissions
Strong default role models and permissions

GWDG CDSTAR has a flexible model for roles and permissions. By default
CDSTAR comes with a role model where access to the system, data and
metadata can be secured by users owning different roles. With this model
users can act in different functions such as researchers, senior or student
researcher, team leader, content admins, data curators, operators etc. Hierar-
chical role models can be transferred directly to CDSTAR. Also by default, the
permissions are enforced on object level. This means that the permissions on

GWDG CDSTAR

Web Applications Desktop Applications Mobile Applications

Metadata Files

9

CDSTAR objects cover all attached resources such as metadata, bitstreams
or collections.

Custom role models and permissions for complex requirements in research

Researchers have often special requirements towards information systems.
Therefore special permissions and role system have to be installed to fulfill
requirements related to information security. As GWDG CDSTAR supports a
modular system of role and permissions custom role models and object per-
missions can be implemented. With custom role models the level of object
security can be extended to individual protection down every associated ob-
ject resource. The GWDG staff can help researchers, software architects, de-
velopers and managers to select and run the right configuration of role models
and permissions in the CDSTAR installation to cover the specific needs in
information security in research efforts.

2.4.2 Integration with Identity Management
By default GWDG CDSTAR has an application specific database for storing
users, roles and passwords. But in order to have a good integration of this
data management software into existing and future applications desktop cli-
ents, portals, CLI tools and mobile clients) in research and supplementary
functions, GWDG CDSTAR also allows integration into LDAP directories. Be-
side classical LDAP products it also allows integration into Microsoft Active
Directory or the GWDG or MPG LDAP infrastructure.

Single sign on allows a smooth switch for the users between the data man-
agement and the application without entering password and user name again
and again. Single sign on will be available through Shibboleth, the OpenSAML
[12] implementation that is widely used in the academic area.1

1 Shibboleth is available as individual option on request.

10

3 Technical Documentation
GWDG CDSTAR uses a uniform REST-API to manage all operation for data
management, administration and search. It also offers an administrative web
interface that allows monitoring and browsing CDSTAR and the stored data
in the web browser. All services may be accessed from directly over the In-
ternet/LAN or direct point-to-point connection from any application that can
send an HTTP/HTTPS request and receive an HTTP/HTTPS response. Alt-
hough CDSTAR is encrypting its connection default by HTTPS, HTTP may be
activated for special scenarios.

3.1 Current Version of the System
The technical documentation currently reflects the features of GWDG
CDSTAR Build 140, dated on 12/05/2013. Future releases maintain the com-
patibility of the technical descriptions below, to ensure software compatibility
over the next years and to ensure future operations. Future additions and
changes to the features will be communicated in advances and super-seeded
REST operations will be marked as deprecated with information about using
current REST operations and migration strategy. The development of GWDG
CDSTAR aims to have a stable API over a long-term period.

3.2 Core Concepts of GWDG CDSTAR
GWDG CDSTAR provides storage for entities, such as binary files and text
files. The five resources supported by the REST API are objects, bitstreams,
metadata, search and access control modification. Files (in the following
called bitstreams) and metadata must belong to an object. CDSTAR offers
two type objects plain objects for storing data and metadata and collection-
objects for linking different objects. Objects support metadata that can be
attached to objects as JSON-file. Using the REST-API plain objects are can
store up two million Bitstreams per object and over four billion objects2.
CDSTAR objects currently do not support partial updates of files, metadata or
access rights meaning that every update request has to upload an entire bi-
nary stream. Every object is marked by default with a persistent identifier and
can be addressed through an URI. Actions on objects are performed by using
HTTP methods to provide operations on the resources. For this GWDG
CDSTAR uses the acronym CRUD to describe all necessary actions that are

2 Dependent on the storage backend and its configuration

11

applicable on REST-resources such as objects, bitstreams, collections and ob-
ject permissions. The acronym CRUD consists of CREATE (HTTP-Post), READ
(HTTP-Get), UPDATE (HTTP-PUT) and DELETE (HTTP-Delete).

Figure 5: Access to bitstreams, metadata and collections

Generally, the URIs are specified as

<scheme>://<service-base-url>/<service_route>/[<UID>]

The term service_route is used to distinguish between the different API-
calls.

3.3 Service-Routes
CDSTAR offers different service routes to interact with the API.

1. /objects/
Creating object and reading object attributes

2. /bitstreams/
Creating, Reading, Updating and Deletion (CRUD) of Bitstreams associ-
ated with objects in /objects. 0..n bitstreams can be attached to an ob-
ject. Bitstreams can only be attached to plain objects – not collections.

3. /metadata/
Creating, Reading, Updating and Deletion (CRUD associated with objects
in /objects. Only one set of metadata can be attached to an object.

Bitstream 1

CDSTAR

Object 1 Object N …

Collections Metadata Metadata

12

4. /collections/
Creating, Reading, Updating and Deletion (CRUD of unidirectional links
associated with objects and other collections.

5. /search/
Get search results of all indexed documents and metadata.

6. /landing/
Show a HTML-representation of an object or collection with JSON-
metadata and hyperlinks to associated bitstreams and and linked objects

7. /accesscontrol/
Show and manipulates the permissions of an object and all associated
bitstreams and metadata.

8. /dariah/
GWDG CDSTAR also offers access to bitstreams using the DARIAH
Storage API – a specialized API for Digital Humanities maintained in the
DARIAH project.

Figure 6: REST-API calls and object structures for plain objects

CDSTAR Object

Bitstream n

Bitstream 1

Metadata

Access Rights

File Attributes

…

/objects

/bitstreams

/metadata

/accesscontrol

13

Figure 7: REST-API calls and object structures for collection-objects

3.4 Types of CRUD Operations and API Calls
In the following the basic principles of CRUD operations and API calls are
explained. GWDG CDSTAR in synchronous and asynchronous manner. Syn-
chronous means that the success (e.g. HTTP status code 201 for update with
put) or fail (HTTP status code 409 for locked objects) of an action is reported
immediately to the application invoking the REST-API call [8]. Asynchronous
mode means that the result cannot of an action cannot be estimated imme-
diately by CDSTAR. In this case, the API gets a HTTP status code 202 (ac-
cepted) [8] that tells the application to check again in a few seconds for the
outcome of the API call by invoking the object properties in /objects. The de-
fault transfer mode is synchronous. The asynchronous transfer mode is used,
if the backend of CDSTAR is facing a high load caused by numerous concur-
rent POSTs, PUT or DELETE operations. In this case, a successful end of the
operation cannot be guaranteed as long as data is still being transferred. The
asynchronous transfer mode will be automatically selected by GWDG
CDSTAR if necessary.

CDSTAR Object

AEAE-0000-0000-FEFE-1
…

AEAE-1111-FEFE-1121-0

Metadata

Access Rights

File Attributes /objects

/collections

/metadata

/accesscontrol

14

Figure 8: API call processing

The processing mode for all CRUD operations is explained in the following:

3.4.1 Synchronous Transfer with POST/PUT
The request is sent as a POST or PUT operation that contains the bitstream.
CDSTAR responds with HTTP status 201 (Created) [8] and sends the location
to the resource.

3.4.2 Asynchronous Transfer with POST/PUT
The request is sent as a POST or PUT operation that contains the bitstream.
CDSTAR responds with HTTP status 202 (Accepted) [8] and sends HTTP-
Headers with the location of a monitor resource. The client must check the
monitor resource, to determine whether the operation has finished success-
fully.

Monitor requests can be performed on any object, no matter whether it is or
was transferred synchronously or asynchronously.

3.4.3 Synchronous Processing of DELETE
A DELETE operation for a resource is requested. CDSTAR responds with
HTTP-Code 204 (No Content) [8].

REST-API Call

HTTP Status Code 202 HTTP Status Code 20x

Check service route
/objects/ for result API call successful

Are resources for immedi-
ately processing available?

Yes No

15

3.4.4 Asynchronous Processing of DELETE
A DELETE operation for a resource is requested. CDSTAR responds with
HTTP status 202 (Accepted) and sends HTTP-Headers with the location of a
monitor resource. The client must check the monitor resource, to determine
whether the operation has finished successfully. Monitor requests can be
performed on any object, no matter whether it is or was transferred synchro-
nously or asynchronously.

3.5 Locking and concurrent Access
GWDG CDSTAR performs locking to avoid impairments of concurrent opera-
tions on the same object. Locking is implemented on object base. This
means, an object and all associated resources (bitstreams, metadata and per-
missions) are locked, if a corresponding creation or update operation is pend-
ing. In general, all operations that alter the object’s content or its state will
cause a lock. However, parallel read accesses are always possible, if the ob-
ject is not locked. GWDG CDSTAR follows the paradigm of optimistic locking,
which implies that massive parallel reading is fast, while updates are compar-
atively costly. For instance, if client A updates the bitstream of an object, cli-
ent B cannot request the object attributes of the same objects until Client X
finished its operation. Following operations cause a lock of an object:

1. CREATE Object
2. UPDATE Object
3. DELETE Object
4. CREATE Bitstream
5. UPDATE Bitstream
6. DELETE Bitstream
7. CREATE Metadata
8. UPDATE Metadata
9. DELETE Metadata
10. CREATE Collection
11. UPDATE Collection
12. DELETE Collection
13. CHANGE Access-Control

16

3.6 Timestamping of Objects
The POSIX time format is used for all fields that represent a point in time; for
example the last-modified fields. POSIX time is defined as the number of sec-
onds that have elapsed since January 1, 1970, 00:00:00 GMT, not counting
leap seconds. The time format is defined, widely used and well support in
many standard tools, programming languages and frameworks. The
timestamps are locale independent (no named months or weekdays as stated
in [13], no attached time-zone, just a number). Reading and writing POSIX
timestamps in various languages can be archived in following ways.

3.7 REST Operations

3.7.1 Objects

3.7.1.1 CREATE
Creation of objects is done by posting an empty data set to the resource /ob-
jects. By default, the service creates a plain object that is capable of holding
bitstreams and metadata. To create collection-objects please refer to the sec-
tion create at the chapter collections.

Request
Service route /objects/
HTTP verb POST
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

The operation was successful. The object has been created. For the new ob-
ject a UID has been generated by the system.

17

Response
Status 201 Created
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body {“uid”:<UID>, “ok”:”true”}

A problem fulfilling the request has been occurred. The client should try to
access the object once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <Error message>

3.7.1.2 READ
Reading objects shows the object attributes of an object. Objects are identi-
fied by a unique ID called UID. Every UID is identical to the Handle-PID con-
sisting of a Handle prefix and a suffix, generated by the GWDG PID-service.
The object attributes consists of information about the associated bitstreams,
metadata, permissions.

Request
Service Route /objects/<UID>
HTTP verb GET
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

18

Listing 1: JSON object representation

The action is successful and the object attributes are delivered to the client.

Response
Status 200 OK
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body Object attributes (see below)

The action failed due to insufficient permissions. The permissions on reading
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on reading this object

{"uid":"EAEA0-64E3-13E3-268C-0",
"revision":null,
"type":"object"
"permissions":
{
"owner" : "mmuster",
"manage" : ["mmuster", "administrator"],
"read" : ["mmuster", "mmueller"],
"write" : ["mmuster"]
},
"metadata":
{
"checksum":"203f35c9df618da8e9659c1a58b88070",
"checksum-algorithm":"md5",
"last-modified":1369743322684,
"content-type":"application/json“
},
"bitstream":
[
{
"bitstreamid":"0",
"content-type":"application/json",
"filesize":0,
"last-modified":1369743282836,
"created":1369743282836
}
]
}

Attributes of bitstream 0

Attributes of metadata

UID of the CDSTAR object
revision of the object
object type

Attributes of object permissions

• Time stamps formated in Unix GMT seconds
• File size stated in kilobytes

19

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client should check the object later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

A problem fulfilling the request has been occurred. The client should try to
access the object once again.

20

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body <Error message>

3.7.1.3 UPDATE
Objects and their associated object attributes are maintained by CDSTAR au-
tomatically. Hence, CDSTAR only provides a GET and DELETE method. Ma-
nipulating File attributes relies on calling the specific API.

3.7.1.4 DELETE
If the deletion of an object is processed, all bitstreams metadata, permissions
of the object are deleted as well. For deleting specific resources of an object
use the respective delete API calls.

Request
Service Route /objects/<UID>
HTTP verb DELETE
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

If the action was successful and the object has been deleted from the server.

Response
Status 204 No Content
Last Modified DateTime
Cache-Control no-store, no-cache
Body <empty>

21

The action failed due to insufficient permissions. The permissions on writing
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on writing this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client should check the object later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

A problem fulfilling the request has been occurred. The client should try to
access the object once again.

22

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body <Error message>

3.7.2 Bitstreams
In the following the operations for attaching, updating and deleting bitstreams
in objects are explained. Bitstreams are identified by bitstream IDs that are
generated by GWDG CDSTAR by incrementing the last known bitstream ID
by one. To access a bitstream a combination of the object UID and the bit-
stream id is necessary. GWDG CDSTAR generates for new bitstreams new
bitstream IDs. GWDG CDSTAR never reuses bitstream IDs that have been
used in an object.

3.7.2.1 CREATE
The content of a file is posted as body payload of an HTTP-request to the
bitstream service route under the usage of an existing object UID and the
explanation of the file mime-type. As a result, the bitstream is stored in the
system and associated with the object.

Request
Service route /bitstreams/<UID>/
HTTP verb POST
Data <binary content>
Content-Type Mime-Type of bitstream
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

The operation was successful. The bitstreams has been stored. A bitstream
ID has been generated.

23

Response
Status 201 Created
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body {“uid”:<UID>,

“bitstreamid”:<bitstreamid>
“ok”:”true”}

The action failed due to insufficient permissions. The permissions on writing
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on writing this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

24

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client has to try the upload again later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

A problem fulfilling the request has been occurred. The client should try to
upload the data once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <Error message>

3.7.2.2 READ
To retrieve the binary content of a stored bitstream the object UID and the
bitstream ID is needed.

Request
Service route /bitstreams/<UID>/

<bitstream ID>
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

25

The action is successful and the object attributes are delivered to the client.

Response
Status 200 OK
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type <Content Type of bitstream>
Body <binary content>

The action failed due to insufficient permissions. The permissions on reading
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on reading this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

26

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client has to try the upload again later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

A problem fulfilling the request has been occurred. The client should try to
upload the data once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <Error message>

3.7.2.3 UPDATE
The content of a file is putted as body payload of an HTTP-request to the
bitstream service route under the usage of an existing object UID, an existing
bitstream ID and the explanation of the file mime-type. As a result, the bit-
stream is stored in the system and associated with the object.

Request
Service route /bitstreams/<UID>/

<bitstream ID>
HTTP verb PUT
Data <binary content>
Content-Type Mime-Type of bitstream
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

27

The operation was successful. The bitstreams has been stored. A bitstream
ID has been generated.

Response
Status 201 Created
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body {“uid”:<UID>,

“bitstreamid”:<bitstreamid>
“ok”:”true”}

The action failed due to insufficient permissions. The permissions on writing
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on writing this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

28

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client has to try the upload again later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

A problem fulfilling the request has been occurred. The client should try to
upload the data once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <Error message>

3.7.2.4 DELETE
For all deleted bitstreams, the object attributes show a null value in the array
of bitstreams stored in the object attributes that are retrievable by the /object
service route. The usage of null references marks bitstreams ID as previously
used.

Request
Service Route /bitstreams/<UID>/

<bitstream ID>
HTTP verb DELETE
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

29

If the action was successful the bitstream is deleted from the server and the
association to the file is deleted from the GWDG CDSTAR object.

Response
Status 204 No Content
Last Modified DateTime
Cache-Control no-store, no-cache
Body <empty>

The action failed due to insufficient permissions. The permissions on writing
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on writing this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object or the bitstream was not found by GWDG
CDSTAR. The object or the bitstreams might be deleted in the meantime by
concurrent accesses or a wrong UID or bitstreams ID has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

30

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received, the
client should try to delete the bitstream later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

A problem fulfilling the request has been occurred. The client should try to
access the object once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body <Error message>

3.7.3 Metadata
Metadata in GWDG CDSTAR use the service route /metadata for accessing
metadata. Only one set of metadata can be added to an object. GWDG
CDSTAR only processes JSON-formatted metadata. Therefore, the setting of
the mime-type application/JSON is mandatory for creating and updating
metadata sets. GWDG CDSTAR verifies and parses all uploaded metadata
sets, if the comply with the JSON-format specification. Further semantic ver-
ification is not performed.

31

3.7.3.1 CREATE
The content of a metadata set is posted as body payload of an HTTP-request
to the metadata service route under the usage of an existing object UID and
the nomination of the content type application/JSON. As a result, the
metadata set is stored in the system and associated with the object.

Request
Service route /metadata/<UID>
HTTP verb POST
Data <binary content>
Content-Type Application/JSON
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

The operation was successful. The metadata has been stored.

Response
Status 201 Created
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body {“uid”:<UID>,

 “ok”:”true”}

The action failed due to insufficient permissions. The permissions on writing
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on writing this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

32

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client has to try the upload again later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

33

A problem fulfilling the request has been occurred. The client should try to
upload the data once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <Error message>

3.7.3.2 READ
Reading objects shows the metadata set stored for an object.

Request
Service Route /metadata/<UID>
HTTP verb GET
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

The action is successful and the metadata set is delivered to the client.

Response
Status 200 OK
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <metadata content>

34

The action failed due to insufficient permissions. The permissions on reading
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on reading this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client should check the object later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

35

A problem fulfilling the request has been occurred. The client should try to
access the object once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body <Error message>

3.7.3.3 UPDATE
The content of a metadata is putted as body payload of an HTTP-request to
the metadata service route under the usage of an existing object UID. As a
result, the metadata is stored in the system and associated with the object.

Request
Service route /metadata/<UID>
HTTP verb PUT
Data <binary content>
Content-Type Application/JSON
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

The operation was successful. The metadata set has been stored.

Response
Status 201 Created
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body {“uid”:<UID>,

 “ok”:”true”}

36

The action failed due to insufficient permissions. The permissions on writing
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on writing this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client has to try the upload again later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

37

A problem fulfilling the request has been occurred. The client should try to
upload the data once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <Error message>

3.7.3.4 DELETE
If the deletion of a metadata set is processed, the JSON-formatted data is
deleted from the server and the association to the object is also deleted.

Request
Service Route /bitstreams/<UID>
HTTP verb DELETE
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

If the action was successful and the metadata set has been deleted from the
server.

Response
Status 204 No Content
Last Modified DateTime
Cache-Control no-store, no-cache
Body <empty>

38

The action failed due to insufficient permissions. The permissions on writing
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on writing this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client should check the object later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

39

A problem fulfilling the request has been occurred. The client should try to
access the object once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body <Error message>

3.7.4 Search
The REST API calls for the search engine encapsulate the search engine and
use the domain specific query language of the software project elasticsearch
[14] to perform real-time search operations.

3.7.4.1 Specify Search Sources
There are three possibilities to search over the index:

1. A Search over metadata and full text search. This is the default case
and requires no query parameter

2. A Search over metadata only. This has to be specified by the query
parameter indexselection=metadata.

3. A Search over the full text only. This has to be specified by the query
parameter indexselection=fulltext.

The query parameters limit and offset are used to browse through the search
result and to limit search depth. Limit sets the number of search result. The
parameter offset allows to skip entries the in search. By default, the offset is
set to 0 in order to return the search result from the beginning. With the offset
parameter, paged browsing of search results can be realized e.g. in an AJAX
application.

NOTE: By default limits is set to 15, meaning that the search only return 15
result in order to perform fast. If you need more search results, increment the
limit query parameter.

40

3.7.4.2 Formulate Search Queries
The query language is based on Apache Lucene and is provided from elas-
ticsearch [15]. The full possibilities can be found on http://www.elas-
ticsearch.org/guide/reference/query-dsl/

A simple full text query can be done via query_string:

Listing 2: Simple query for full text search

To access metadata, Boolean and text queries are also useful. Dependent on
the metadata fields a Boolean and text query can be done via:

Listing 3: Query covering Boolean search expression and full text

{
 "query_string" : {
 "query" : "foo"
 }
}

{
 "bool": {
 "must": [
 {
 "text": {
 "title": "dolorem"
 }
 },
 {
 "text": {
 "titleValue": "Alienus"
 }
 }
]
 }
}

41

http://www.elasticsearch.org/guide/reference/query-dsl/
http://www.elasticsearch.org/guide/reference/query-dsl/

3.7.4.3 Search on full text index and metadata
To search over the full text index and the metadata index perform following
command.

Request
Service route /search/
Query parameter Indexselection (optional)
Query parameter limit (optional)
Query parameter offset (optional)
HTTP verb POST
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)
Content-Type Application/JSON
Body <search query>

The operation was successful. The object has been created. For the new ob-
ject a UID has been generated by the system.

Response
Status 200 OK
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body <search results> (see below)

If the search has been successful and search results exist, the search results
are delivered back as JSON-formatted string (see next page). If no matching
results have been found, the result is:

Listing 4: JSON-formatted search results with no hits

{"hits":[],"totalhits":0,"maxscore":"0.0"}

42

Listing 5: JSON-formatted search result with hits

{
 "hitcount": 4,
 "maxscore": 1.4662267,
 "hits": [
 {
 "source": "production",
 "type": "metadata",
 "score": 0.7296878,
 "uid": "EAEA0-23A9-6D2C-7567-0"
 },
 {
 "source": "production",
 "type": "metadata",
 "score": 0.7296878,
 "uid": "EAEA0-7B37-D9E3-E627-0"
 },
 {
 "source": "production",
 "type": "metadata",
 "score": 0.8756254,
 "uid": "EAEA0-C8DB-788C-7E09-0"
 },
 {
 "source": "production",
 "type": "metadata",
 "score": 1.4662267,
 "uid": "EAEA0-9958-B32F-4CA3-0"
 }
]
}

43

The search result produces following results.

JSON-Fields (search result)
hitcount Number of found results (hits)
maxscore Score of the result with the highest rele-

vancy
hits Array of JSON hit-objects

JSON-Fields (hit object)
source Name of the search index, where the result

has been found. By default, there is only
one index.

type Indication of the search result type
(metadata or fulltext)

score Relevancy of the search result in relation to
the search

uid UID of the object where the result has
been found

A problem fulfilling the request has been occurred. The client should try to
access the object once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <Error message>

3.7.4.4 Search on metadata only
To search over the metadata index only perform following command.

Request
Service route /search/metadata/
HTTP verb POST
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)
Content-Type Application/JSON

44

The success and error messages are identical to the results shown above.

3.7.5 Collections

3.7.5.1 Introduction
In GWDG CDSTAR every object has a unique identifier, called UID. GWDG
CDTSTAR supports a semantic connection of multiple objects through the
mechanism of collections. Collections are special objects that contain instead
of files/bitstreams a list of UIDs. This link list can point to CDSTAR-objects
and even to other CDSTAR collection-objects. With this mechanism, concepts
like folders, object trees or networks can be modeled and used within GWDG
STAR. As collection also store metadata these collections can be filled with
semantically information. Hence users can create views or link lists on entire
sets of object. This is very useful to implement many scientific use cases with
GWDG CDSTAR.

Figure 9: Structure example of GWDG CDSTAR collections

Object 1 Object 2 Object N

Collection B Collection C

Collection A

45

3.7.5.2 CREATE
Creation of objects is done by posting an empty data set to the resource /ob-
jects. To create collection-objects with the ability to hold collections the query
parameter type=collection has to be appended to the service route.

Request
Service route /objects/
Query-parameter for creating a col-
lection-object

type=collection (optional)

HTTP verb POST
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

The operation was successful. The object has been created. For the new ob-
ject a UID has been generated by the system.

Response
Status 201 Created
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body {“uid”:<UID>, “ok”:”true”}

A problem fulfilling the request has been occurred. The client should try to
access the object once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <Error message>

46

3.7.5.3 READ Collection Object
Like normal GWDG CDSTAR objects, collections can also be read and dis-
played by using the service route /objects. Please refer to the section objects
READ at the chapter REST operations.

3.7.5.4 READ Collection Content
The return value of collection content is a JSON-formatted array of UIDs.
When a collection-object has been created, the collection array is initially
empty.

Request
Service Route /collections/<UID>
HTTP verb GET
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

The action is successful and the array of UIDs is delivered to the client.

Response
Status 200 OK
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {[<UID_1>,<UID_2>, ...]}

The action failed due to insufficient permissions. The permissions on reading
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on reading this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

47

The action failed. The collection-object was not found by GWDG CDSTAR.
The object might be deleted in the meantime by concurrent accesses or a
wrong UID has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

The collection-object or associated resources (bitstreams, metadata or access
rights) is currently updated by a concurrent access. If the error 409 is received
by client, the client should check the object later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

48

A problem fulfilling the request has been occurred. The client should try to
access the object once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body <Error message>

3.7.5.5 UPDATE
To update the collection, an entire array of UIDs has to be put to the collection-
object. It is not possible to remove a single UID with an API call. To remove
one or multiple UIDs from a collection, the client has to read the collection,
then remove the respective UIDs from the array and then update the collec-
tion by putting the updated array back to the collection-object. This paradigm
of full-updates for data sets follows the same principle in CDSTAR that applies
on metadata and bitstreams. Hence, to remove all UID links to other object
stored in a collection-object, simply put an empty array to the collection ser-
vice route by using the collection-object UID.

Request
Service route /collections/<UID>
HTTP verb PUT
Data {[<UID_1>,<UID_2>, ...]}
Content-Type application/JSON
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

49

The operation was successful. The collection set has been update in the col-
lection-object.

Response
Status 201 Created
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body {“uid”:<UID>,

 “ok”:”true”}

The action failed due to insufficient permissions. The permissions on writing
the collection-object is needed to fulfill the action. Update the permissions of
the object in order to get access to the resource or choose a different user
with permissions on writing this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

50

The object or associated resources (collection, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client has to try the upload again later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

A problem fulfilling the request has been occurred. The client should try to
upload the data once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <Error message>

3.7.5.6 DELETE
Like normal GWDG CDSTAR objects, collections can also be deleted by using
the service route /objects. Please refer to the section objects DELETE at the
chapter REST operations.

51

3.7.6 Object Permissions
An introduction into the default role and permissions model is given in the
Feature chapter in the section secure access. As GWDG CDSTAR can be
equipped with custom modes, this section only describes the interaction with
the default role bases model that comes with every standard instance of
GWDG CDSTAR. With this default model users can act in different functions
such as researchers, senior or student researcher, team leader, content ad-
mins, data curators, operators etc. Hierarchical role models can be transferred
directly to CDSTAR. Also by default, the permissions are enforced on object
level. This means that the permissions on CDSTAR objects cover all attached
resources such as metadata, bitstreams or collections. Therefore no separate
permissions can be set for bitstreams and metadata in the same object. How-
ever, this feature can be archived by separating metadata and bitstreams into
single objects and using collections to tie the up.

In the default role model assigns to every user a default group that is identical
to his user id.3 This group should not be shared with other users. Also by
default every object has default permissions and a default owner group. By
default, the owner is the creator of an object.

Every CDSTAR object and collection has four attributes to control the access
on reading, writing and maintenance.

1. READ – 0-n roles that can read the object and all metadata, collec-
tions or bitstreams

2. WRITE – 0-n roles that can write the object and all metadata, collec-
tions or bitstreams

3. OWNER – 1 role that owns the object - can change the permissions
of the object

4. MANAGE – 0-n roles can change the permissions of the object and
the owner of the object

To manage the permissions in an object, GWDG CDSTAR uses a JSON-for-
matted permission structure that is available under the key permissions in
every object. The structure is returned, when the permission of an object are
read or set.

3 The default settings depend on the configuration of the GWDG CDSTAR
instance.

52

Listing 6: Object permissions for CDSTAR objects

3.7.6.1 READ
There are two ways how to read the permissions of an object. First, the per-
missions are return as part of the object attributes, when using a GET request
on the /object route by using the UID. Please have a look at the REST opera-
tion chapter with the section on reading objects.

The recommended and second way is to use the /accesscontrol/ service route
to read and set object permissions.

Request
Service Route /accesscontrol/<UID>
HTTP verb GET
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

The action is successful and the object attributes are delivered to the client.

Response
Status 200 OK
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <object permissions>

{
 "owner" : "user",
 "manage" : ["admin", "user"],
 "read" : ["admin", "guest", "user"],
 "write": ["user", "portaluser"]
}

53

The action failed due to insufficient permissions. The permissions on reading
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on reading this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client should check the object later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

54

A problem fulfilling the request has been occurred. The client should try to
access the object once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body <Error message>

3.7.6.2 SET
Request
Service route /accesscontrol/<UID>
HTTP verb PUT
Data <binary content>
Content-Type Application/JSON
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

The operation was successful. The metadata set has been stored.

Response
Status 201 Created
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <object permissions>

55

The action failed due to insufficient permissions. The permissions on writing
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on writing this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client has to try the upload again later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

56

A problem fulfilling the request has been occurred. The client should try to
upload the data once again.

Errors
Status 503 Service Temporarily Unavaila-

ble
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type application/JSON
Body <Error message>

3.7.7 DARIAH Storage API
GWDG CDSTAR also supports access to bitstreams with the DARIAH Stor-
age API – a specialized API for digital Humanities maintained in the DARIAH
project [16]. Currently support for Version 1.0 of the API is offered. All man-
datory and optional fields are supported. The support for Shibboleth and the
associated PAOS-Header support will follow in late summer 2013.

To obtain a copy of the DARIAH storage specification as DARIAH-involved
person can either consult the DARIA wiki (https://dev2.dariah.eu/wiki/) or
other persons may address their request to the DARIAH-DE project
(https://portal-de.dariah.eu/).

3.7.8 Landing Pages
Landing pages are the HTML-representation of an object or collection with
the rendered JSON-metadata, collections and hyperlinks to associated bit-
streams. Landing pages can be retrieved through the web browser by using
the service route /landing/<UID>.

57

https://dev2.dariah.eu/wiki/
https://portal-de.dariah.eu/

Figure 10: Object landing page in web browser

Reading objects shows the metadata set stored for an object.

Request
Service Route /landing/<UID>
HTTP verb GET
Authorization Basic (optional)
Authorization PAOS-Headers (optional)
Cookie Session-ID (optional)
Version API-Version-String (optional)

58

The action is successful and the metadata set is delivered to the client.

Response
Status 200 OK
Last Modified DateTime
Cache-Control no-store, no-cache
Location UID of the created object
Content-Type Text/html
Body Landing page content

The action failed due to insufficient permissions. The permissions on reading
the object is needed to fulfill the action. Update the permissions of the object
in order to get access to the resource or choose a different user with permis-
sions on reading this object.

Errors
Status 403 forbidden
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”forbidden”,

“reason”:”permission_denied”}

The action failed. The object was not found by GWDG CDSTAR. The object
might be deleted in the meantime by concurrent accesses or a wrong UID
has been submitted.

Errors
Status 404 Object not found
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {“error”:”not_found”,

“reason”:”missing”}

59

The object or associated resources (bitstreams, metadata or access rights) is
currently updated by a concurrent access. If the error 409 is received by client,
the client should check the object later.

Errors
Status 409 Conflict
Last Modified DateTime
Cache-Control no-store, no-cache
Content-Type application/JSON
Body {"error":"conflict",

"reason":"object update in progress"}

A problem fulfilling the request has been occurred. The web browser should
try to access the object once again.

60

4 Conclusion
After going through all features, requirements and technical documentations,
it’s time to sum up all features. When using GWDG CDSTAR, scientists, re-
searchers, information system designers and software developers get a pow-
erful data management solution that is research data management enabled
by design. GWDG CDSTAR is stable, easy to integrate into existing and new
software and boosts the development results. It can be used as man data
management software in project, integration middle ware or archiving solu-
tion for long-term access. For more information and question about GWDG
CDSTAR please contact the GWDG CDSTAR team (see contact section).

61

5 Contact
Consulting about GWDG CDSTAR, research data management, long-term ar-
chiving and further GWDG services supporting your research data efforts can
be provided at any time. Also a demonstration setup for GWDG CDSTAR can
be installed within days. For further information and questions please contact
following responsible persons at the GWDG.

Technical Consulting & Lead Developer GWDG CDSTAR
Oliver Schmitt
Phone: + 49 551 39-20512
E-Mail: oliver.schmitt@gwdg.de

Data management and long-term archiving
Dr. Ulrich Schwardmann
Phone: + 49 551 201-1542
E-Mail: ulrich.schwardmann@gwdg.de

62

mailto:oliver.schmitt@gwdg.de
mailto:ulrich.schwardmann@gwdg.de

6 Acknowledgements
Regarding the creation of GWDG CDSTAR we like to acknowledge the ideas
and additions of following persons. Christof Pohl, Stephan Hilker and
Dr. Christian Boehme from the GWDG for the provision of use cases in the
project socioeconomic reporting. Also the GWDG data management team for
discussing the concepts and ideas. Zeljko Carevic from the GESIS - Leibniz-
Institute for the Social Sciences for testing extensively the REST-Interface.
Bartłomiej Marzec, Bachelor student at the Department of Medical Informat-
ics Göttingen for testing and regularly bug reporting. Danah Tonne and Fran-
cesca Rindone from SWM, KIT for providing their ideas on DARIAH storage
API support. Maik Srba from the Cloud4E project at the GWDG for providing
the necessary concepts and implementations on token-based authentication
and finally Dr. Tim A. Majchrzak, Practical Computer Science Group, Depart-
ment of Information System, University Münster for sharing ideas and feed-
back on handling JSON-based metadata schemas and map-reduce-based data
retrieval operations.

63

7 Literature
[1] Amazon Web Services, Inc. (2013, June) Amazon S3, Cloud

Computing Storage for Files, Images, Videos. [Online].
http://aws.amazon.com/s3/

[2] Microsoft Corporation. (2013, June) Blob Service REST API. [Online].
http://msdn.microsoft.com/en-us/library/windowsazure/
dd135733.aspx

[3] Deutsche Forschungsgemeinschaft. (1998) Vorschläge zur Sicherung
gute Wissenschaftlicher Praxis. [Online].
http://www.dfg.de/download/pdf/dfg_im_profil/reden_stellungnahme
n/download/empfehlung_wiss_praxis_0198.pdf

[4] The Apache Software Foundation. (2013, June) Apache Tika -
Supported Document Formats. [Online].
http://tika.apache.org/0.10/formats.html

[5] R. Taylor and R. Fielding, "Principled design of the modern Web
architecture," ACM Trans. Internet Technol., pp. 115-150, May 2002.

[6] European Persistent Identifier Consortium. (2013, June) EPIC -
European Persistent Identifier Consortium. [Online].
http://pidconsortium.eu/

[7] Network Working Group. (2006, June) Lightweight Directory Access
Protocol (LDAP): Technical Specification Road Map. [Online].
http://tools.ietf.org/html/rfc4510

 [8] J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee
and R. Fielding (1999, April) Hypertext Transfer Protocol -- HTTP/1.1.
[Online].
http://www.w3.org/Protocols/rfc2616/rfc2616.html

64

http://aws.amazon.com/s3/
http://msdn.microsoft.com/en-us/library/windowsazure/dd135733.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dd135733.aspx
http://www.dfg.de/download/pdf/dfg_im_profil/reden_stellungnahmen/download/empfehlung_wiss_praxis_0198.pdf
http://www.dfg.de/download/pdf/dfg_im_profil/reden_stellungnahmen/download/empfehlung_wiss_praxis_0198.pdf
http://tika.apache.org/0.10/formats.html
http://pidconsortium.eu/
http://tools.ietf.org/html/rfc4510
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[9] D. Crockford. (2006, July) The application/json Media Type for
JavaScript Object Notation (JSON). [Online].
http://www.ietf.org/rfc/rfc4627.txt

[10] University of Essex. (2013, June) UK Data Archive - RESEARCH DATA
LIFECYCLE. [Online].
http://data-archive.ac.uk/create-manage/life-cycle

[11] iRODS Consortium. (2013, June) IRODS: Data Grids, Digital Libraries,
Persistent Archives, and Real-time Data Systems. [Online].
http://www.irods.org

[12] Shibboleth Consortium. (2013, June) Shibboleth. [Online].
http://shibboleth.net/

[13] P. Resnick. (2001, April) Internet Message Format, Network Working
Group RFC 2822. [Online].
http://www.ietf.org/rfc/rfc2822.txt

[14] Elasticsearch Global BV. (2013, June) Open Source Distributed Real
Time Search & Analytics | Elasticsearch. [Online].
http://www.elasticsearch.org/

[15] Elasticsearch Global BV. (2013, June) Query Dsl | Reference Guide |
Elasticsearch. [Online].
http://www.elasticsearch.org/guide/reference/query-dsl/

[16] DARIAH-EU Coordination Office. (2013, June) DARIAH - Digital
Research Infrastructure for the Arts and Humanities. [Online].
http://www.dariah.eu/

65

http://www.ietf.org/rfc/rfc4627.txt
http://data-archive.ac.uk/create-manage/life-cycle
http://www.irods.org/
http://shibboleth.net/
http://www.ietf.org/rfc/rfc2822.txt
http://www.elasticsearch.org/
http://www.elasticsearch.org/guide/reference/query-dsl/
http://www.dariah.eu/

Oliver Schmitt
Andreas Siemon

Ulrich Schwardmann
 Marcel Hellkamp

GWDG Object Storage and
Search Solution for Research

Common Data Storage
Architecture (CDSTAR)

BERICHT
78

	Table of Contents
	1 Introduction
	2 Features
	2.1 Data Hub and Storage
	2.2 Management of structured and unstructured Data and its Metadata
	2.3 Enterprise-grade Object Search and Information Retrieval in Science
	2.4 Securing the Access to Object Storage
	2.4.1 Roles and Permissions
	2.4.2 Integration with Identity Management

	3 Technical Documentation
	3.1 Current Version of the System
	3.2 Core Concepts of GWDG CDSTAR
	3.3 Service-Routes
	3.4 Types of CRUD Operations and API Calls
	3.4.1 Synchronous Transfer with POST/PUT
	3.4.2 Asynchronous Transfer with POST/PUT
	3.4.3 Synchronous Processing of DELETE
	3.4.4 Asynchronous Processing of DELETE

	3.5 Locking and concurrent Access
	3.6 Timestamping of Objects
	3.7 REST Operations
	3.7.1 Objects
	3.7.1.1 CREATE
	3.7.1.2 READ
	3.7.1.3 UPDATE
	3.7.1.4 DELETE

	3.7.2 Bitstreams
	3.7.2.1 CREATE
	3.7.2.2 READ
	3.7.2.3 UPDATE
	3.7.2.4 DELETE

	3.7.3 Metadata
	3.7.3.1 CREATE
	3.7.3.2 READ
	3.7.3.3 UPDATE
	3.7.3.4 DELETE

	3.7.4 Search
	3.7.4.1 Specify Search Sources
	3.7.4.2 Formulate Search Queries
	3.7.4.3 Search on full text index and metadata
	3.7.4.4 Search on metadata only

	3.7.5 Collections
	3.7.5.1 Introduction
	3.7.5.2 CREATE
	3.7.5.3 READ Collection Object
	3.7.5.4 READ Collection Content
	3.7.5.5 UPDATE
	3.7.5.6 DELETE

	3.7.6 Object Permissions
	3.7.6.1 READ
	3.7.6.2 SET

	3.7.7 DARIAH Storage API
	3.7.8 Landing Pages

	4 Conclusion
	5 Contact
	6 Acknowledgements
	7 Literature
	Leere Seite
	Leere Seite

<<

 /ASCII85EncodePages false

 /AllowPSXObjects false

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages false

 /AutoFilterColorImages true

 /AutoFilterGrayImages true

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorConversionStrategy /CMYK

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth -1

 /ColorImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorImageDownsampleThreshold 1.50000

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /DCTEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 300

 /ColorSettingsFile ()

 /CompatibilityLevel 1.3

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /Default

 /Description <<

 /DEU <FEFF005B00420061007300690065007200740020006100750066002000220047004E005F0044007200750063006B005F0046004F004700520041003300390022005D0020005B0042006100730069006500720074002000610075006600200022005B0044007200750063006B0061007500730067006100620065007100750061006C0069007400E40074005D0022005D002000560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E002C00200076006F006E002000640065006E0065006E002000530069006500200068006F006300680077006500720074006900670065002000500072006500700072006500730073002D0044007200750063006B0065002000650072007A0065007500670065006E0020006D00F60063006800740065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200035002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>

 >>

 /DetectBlends true

 /DetectCurves 0

 /DoThumbnails false

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth -1

 /GrayImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageDownsampleThreshold 1.50000

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /DCTEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 300

 /ImageMemory 1048576

 /JPEG2000ColorACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams false

 /MaxSubsetPct 100

 /MonoImageDepth -1

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1.50000

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 1200

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 1

 /Optimize true

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MarksOffset 6

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PageMarksFile /RomanDefault

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile ()

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

