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Vorwort 

Der vorliegende Band ist der elfte Band der Reihe „Forschung und wissen-
schaftliches Rechnen“. Er enthält sieben der neun für den Heinz-Billing-
Preis des Jahres 2003 eingereichten Beiträge. In diesem Jahr ging der Preis 
erstmalig an eine Forschergruppe außerhalb der Max-Planck-Gesellschaft, 
und zwar an Roland Chrobok, Sigurdur F. Hafstein und Andreas Pottmeier 
vom Fachbereich Physik der Universität Duisburg-Essen. Sie wurden aus-
gezeichnet für ihre Arbeit „OLSIM: A New Generation of Traffic 
Information Systems“. OLSIM errechnet aus Verkehrsdaten verschiedenster 
Quellen den aktuellen Verkehrszustand des Autobahnnetzes von Nordrhein-
Westfalen und simuliert die zukünftige Verkehrssituation. Über die Inter-
netseite www.autobahn.nrw.de kann sich jeder über den aktuellen Verkehrs-
zustand und über Prognosen für die nächsten 30 und 60 Minuten informie-
ren. 

Weitere Auszeichnungen erhielten eine Arbeit zur Berechnung von 
Feynman Diagrammen sowie ein Programmpaket zur Durchführung von 
MD/MC Simulationen an Soft Matter. Auch die übrigen eingereichten und 
hier veröffentlichten Beiträge decken ein breites Spektrum ab, angefangen 
von Problemen der empirischen Sozialforschung über Visualisierung von 3-
dimensionalen Datensätzen in der Tomografie und Generierung und 
Visualisierung von komplexen NMR Pulssequenzen bis hin zur Berechung 
von komplexen Transportphänomenen.  

Viele der eingereichten Arbeiten benutzen im Internet frei verfügbare 
und standardisierte Module. Darüber hinaus hat sich die Art und Weise 
geändert, wie die Autoren über die Nutzung und Weiterverbreitung der ein-
gereichten Programme denken. Während es in der Vergangenheit in der 
Regel darum ging, mit Hilfe der Datenverarbeitung Lösungen für ein spe-
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zielles im Rahmen der eigenen Forschungsarbeit aufgetretenes Problem zu 
finden, gehen inzwischen immer mehr der Wissenschaftler, die ihre Arbei-
ten für den Heinz-Billing-Preis einreichen, dazu über, ihre Ansätze der 
wissenschaftlichen Community über das Internet zur Verfügung zu stellen.  
Das findet seinen Ausdruck in verschiedenen  Beiträgen, die hier vorgestellt 
werden.  

Ein herzlicher Glückwunsch geht an dieser Stelle an den Stifter des 
Preises, Herrn Prof. H. Billing, der im Februar dieses Jahres 90 Jahre alt 
geworden ist. Wir möchten uns im Namen der Heinz-Billing-Vereinigung 
und im Namen aller Preisträger der letzten Jahre sehr für sein großes 
Interesse am wissenschaftlichen Rechnen in seiner ganzen Vielfalt sowie 
seine fortwährende Unterstützung bedanken.  

Bedanken wollen wir uns auch bei Herrn Günter Koch, GWDG, für die 
Umsetzung der eingesandten Manuskripte in eine für das Offsetdruckver-
fahren kompatiblen Druckvorlage.  

Die Vergabe des Preises wäre ohne Sponsoren nicht möglich. Wir 
danken der Firma IBM Deutschland, welche für 2003 als Hauptsponsor auf-
getreten ist.  

Die hier abgedruckten Arbeiten sind ebenfalls im Internet unter der 
Adresse 

www. billingpreis.mpg.de 
zu finden. 

 
 
 
 

Kurt Kremer, Volker Macho 



     

 

Der Heinz-Billing-Preis 2003 
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Ausschreibung des Heinz-Billing-Preises 2003 zur 
Förderung des wissenschaftlichen Rechnens 

Im Jahre 1993 wurde zum ersten Mal der Heinz-Billing-Preis zur Förderung 
des wissenschaftlichen Rechnens vergeben. Mit dem Preis sollen die Leis-
tungen derjenigen anerkannt werden, die in zeitintensiver und kreativer 
Arbeit die notwendige Hard- und Software entwickeln, die heute für neue 
Vorstöße in der Wissenschaft unverzichtbar sind.  

Der Preis ist benannt nach Professor Heinz Billing, emeritiertes wissen-
schaftliches Mitglied des Max-Planck-Institutes für Astrophysik und lang-
jähriger Vorsitzender des Beratenden Ausschusses für Rechenanlagen in der 
Max-Planck-Gesellschaft. Professor Billing stand mit der Erfindung des 
Trommelspeichers und dem Bau der Rechner G1, G2, G3 als Pionier der 
elektronischen Datenverarbeitung am Beginn des wissenschaftlichen Rech-
nens. 

Der Heinz-Billing-Preis zur Förderung des wissenschaftlichen Rechnens 
steht unter dem Leitmotiv 

„EDV als Werkzeug der Wissenschaft“. 

Es können Arbeiten eingereicht werden, die beispielhaft dafür sind, wie 
die EDV als methodisches Werkzeug Forschungsgebiete unterstützt oder 
einen neuen Forschungsansatz ermöglicht hat. 

Der folgende Stichwortkatalog mag den möglichen Themenbereich bei-
spielhaft erläutern: 



6 

– Implementation von Algorithmen und Softwarebibliotheken 
– Modellbildung und Computersimulation 
– Gestaltung des Benutzerinterfaces 
– EDV gestützte Meßverfahren 
– Datenanalyse und Auswertungsverfahren 
– Visualisierung von Daten und Prozessen 

Die eingereichten Arbeiten werden referiert und in der Buchreihe "For-
schung und wissenschaftliches Rechnen" veröffentlicht.  

Die Jury wählt einen Beitrag für den mit € 3000,-  dotierten Heinz-
Billing-Preis 2003 zur Förderung des wissenschaftlichen Rechnens aus. Die 
Beiträge, in deutscher oder englischer Sprache abgefasst, müssen keine 
Originalarbeiten sein und sollten möglichst nicht mehr als fünfzehn Seiten 
umfassen. 

Da zur Bewertung eines Beitrages im Sinne des Heinz-Billing-Preises 
neben der technischen EDV-Lösung insbesondere der Nutzen für das jewei-
lige Forschungsgebiet herangezogen wird, sollte einer bereits publizierten 
Arbeit eine kurze Ausführung zu diesem Aspekt beigefügt werden.  

Der Heinz-Billing-Preis wird jährlich vergeben. Die Preisverleihung 
findet anlässlich des 20. DV–Treffens der Max-Planck-Institute am 20. 
November 2003 in Göttingen statt. 

Beiträge für den Heinz-Billing-Preis 2002 sind bis zum 15. Juli 2003 
einzureichen. 
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Heinz-Billing-Preisträger 

1993:  Dr. Hans Thomas Janka, Dr. Ewald Müller, Dr. Maximilian Ruffert 
Max-Planck-Institut für Astrophysik, Garching 

Simulation turbulenter Konvektion in Supernova-Explosionen in 
massereichen Sternen 

1994:  Dr. Rainer Goebel 
Max-Planck-Institut für Hirnforschung, Frankfurt 

- Neurolator - Ein Programm zur Simulation neuronaler Netzwerke 

1995:  Dr. Ralf Giering 
Max-Planck-Institut für Meteorologie, Hamburg 

AMC: Ein Werkzeug zum automatischen Differenzieren von 
Fortran Programmen 

1996:  Dr. Klaus Heumann 
Max-Planck-Institut für Biochemie, Martinsried 

Systematische Analyse und Visualisierung kompletter Genome  
am Beispiel von S. cerevisiae 

1997:  Dr. Florian Mueller 
Max-Planck-Institut für molekulare Genetik, Berlin 

ERNA-3D (Editor für RNA-Dreidimensional) 

1998:  Prof. Dr. Edward Seidel 
Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-
Institut, Potsdam 

Technologies for Collaborative, Large Scale Simulation in Astro-
physics and a General Toolkit for solving PDEs in Science and 
Engineering 

1999: Alexander Pukhov 
Max-Planck-Institut für Quantenoptik, Garching 

High Performance 3D PIC Code VLPL: 
Virtual Laser Plasma Lab 
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2000: Dr. Oliver Kohlbacher  
Max-Planck-Institut für Informatik, Saarbrücken 

BALL – A Framework for Rapid Application Development in 
Molecular Modeling 

2001: Dr. Jörg Haber  
Max-Planck-Institut für Informatik, Saarbrücken  
MEDUSA, ein Software-System zur Modellierung und Animation 
von Gesichtern 

2002: Daan Broeder, Hennie Brugman und Reiner Dirksmeyer  
Max-Planck-Institut für Psycholinguistik, Nijmegen  
NILE:  Nijmegen Language Resource Environment 

2003: Roland Chrobok, Sigurður F. Hafstein und Andreas Pottmeier 
Universität Duisburg-Essen  
OLSIM: A New Generation of Traffic Information Systems 
 

Das Kuratorium des Heinz-Billing-Preises 

Prof. Dr. Heinz Billing  
Emeritiertes Wissenschaftliches Mitglied des Max-Planck-Institut für 
Astrophysik, Garching 

Prof. Dr. Friedel Hossfeld  
Forschungszentrum Jülich GmbH, Jülich 

Prof. Dr. K. Ulrich Mayer  
Max-Planck-Institut für Bildungsforschung, Berlin 

Prof. Dr. Stefan Müller  
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig 

Prof. Dr. Jürgen Renn  
Max-Planck-Institut für Wissenschaftsgeschichte, Berlin 

Prof. Dr. H. Wolfgang Spiess  
Max-Planck-Institut für Polymerforschung, Mainz 
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Laudatio 

Der Heinz-Billing-Preis 2003 wird für das Programmpaket OLSIM: A New 
Generation of Traffic Information Systems verliehen. Durch die Online 
Vernetzung von aktuellen Verkehrsdaten aus einem flächendeckenden Netz 
von Messpunkten mit modernen Verfahren der Computersimulation von 
Verkehrsflüssen lassen sich mit bisher nicht gekannter Zuverlässigkeit 
gegenwärtige Verkehrszustände analysieren und zukünftige vorhersagen. 
Das Verkehrsinformationssystem OLSIM ist über Internet öffentlich 
zugänglich und gibt jedem Benutzer die Möglichkeit (für das Autobahnnetz 
von Nordrhein-Westfalen) diese Informationen zu nutzen. 

Bei den Prognosen werden neben den aktuellen Verkehrsdaten 
zeitbezogene typische „Fingerabdrücke“ der einzelnen Strecken 
berücksichtigt. Das Programmpaket stellt damit einen wichtigen Schritt für 
eine optimale Information des einzelnen Verkehrsteilnehmers sowie ein 
wesentlich verbessertes Verkehrsleitsystem dar. 

 

Verleihung des Heinz-Billing-Preises 2003 durch Prof. Kurt Kremer (mitte) an 
Roland Chrobock (links) und Sigurður F. Hafstein (rechts) 
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OLSIM: A New Generation of Traffic Information 
Systems 

Roland Chrobok, Sigurður F. Hafstein, Andreas Pottmeier 

University Duisburg-Essen 

Summary 

Detailed and reliable information about the current traffic state is hardly obtainable by the road 
user. Therefore, we propose a web based visualization of the current and future traffic load of 
the autobahn network of North Rhine-Westphalia, Germany. This novel traffic information 
system called OLSIM is based on an efficient and highly realistic traffic flow model, which is 
fed by traffic data of 4,000 detecting devices across the road network every minute, and a 
graphical user interface which can be accessed at www.autobahn.nrw.de. 

1. Introduction 

Since the construction of the first autobahn in Germany in the early 30th 
between Bonn and Cologne, the vehicular traffic has risen in a dramatic 
manner, especially in North Rhine-Westphalia. Whereas at first the auto-
bahns could handle the traffic demand easily, nowadays, particularly in 
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densely populated regions, the existing autobahn network has reached its 
capacity limit. The daily occurring traffic jams cause significant economic 
damage. Moreover, in these areas, it is usually hardly possible and socially 
untenable to enlarge the existing network. This is in particular true for the 
German state of North Rhine-Westphalia. The network is not able to cope 
with the demand in the daily rush hours and the drivers have to deal with 
the traffic jams in the Rhine-Ruhr region (Dortmund, Duisburg, Essen, 
Krefeld, Düsseldorf, etc.) and around Cologne (Leverkusen, Neuss, etc.). 
The prognosis for the future paints an even worse picture as the demand 
will increase further. New information systems and traffic management 
concepts are thus truly needed. 

Therefore, we established the advanced traffic information system 
OLSIM which gives the internet user the opportunity to get information 
about the current traffic state, a 30, and a 60 minute prognosis of the auto-
bahn network of North Rhine-Westphalia. Our approach to generate the 
traffic state in the whole autobahn network is to use locally measured traffic 
data, mainly provided by about 4,000 loop detectors as the input into an 
advanced cellular automaton traffic simulator. These measured data, which 
are delivered minute by minute, include especially the number of vehicles 
and trucks passed, the average speed of the passenger cars and trucks, and 
the occupancy, i.e., the sum of the times a vehicle covers the loop detector. 
The simulator does not only deliver information about the traffic states in 
regions not covered by measurement, but also gives reasonable estimates 
for other valuable quantities like travel times for routes, a quantity that is 
not directly accessible from the measurements of the detectors. As a further 
improvement we combine the current traffic data and heuristics of aggre-
gated and classified traffic data to forecast the future traffic state. In the first 
step we gave a short-term forecast for 30 minutes, which was extended in 
the next step by a 60 minute prognosis. This information is completed by 
the temporal and spatial road work and actual road closures. All these valu-
able traffic information is integrated in a Java applet that can be accessed by 
every internet user at www.autobahn.nrw.de. 

2. General Concept of the Traffic Information System 
OLSIM 

The intention in developing the traffic information system OLSIM is to 
offer the opportunity to inform the road user fast and efficient about the 
current and the predictive traffic state. Therefore, the information men-
tioned above has to be collected and prepared in a manner that is useful for 
the user. The general setup of the traffic information system OLSIM is 
depicted in Fig. 1. 
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First of all the different kinds of data have to be collected. Especially, the 
traffic data is stored in a database. These are sent from 4,000 loop detectors 
to the central OLSIM server every minute. The same holds for the data of 
the control states of about 1,800 variable message signs (VMS) that are 
located across the network. Furthermore, the data of road works are sent 
from the traffic centrals to OLSIM. The messages of short term construction 
areas are sent daily, those of permanent construction areas every two weeks. 
The data include the location and the duration of the construction area and 
an estimate whether the construction area will cause congestion or not. 

Another data source are the so called RDS/TMC-messages. These mes-
sages are information provided by the traffic warning service and include all 
kind of warnings concerning the current traffic like traffic jams, accidents, 
road closures, and reroutings. These data are sent to the OLSIM server 
immediately when they are generated. 

To generate a valid picture of the traffic state many kinds of data fusion 
techniques are needed. First, the actual traffic data are integrated into the 
microscopic traffic simulator. Using it, every vehicle that is measured at any 
time at one of the 4,000 loop detectors is directly fed into the simulation and 
virtually moves on. In this way the point information of the loop detectors is 
merged into a network wide traffic state. Such simulations are running for 
the current traffic state, for the 30 minutes, and for the 60 minutes forecast. 
In contrast to the online simulation, the forecasts are based on a combina-
tion of the actual traffic data and heuristics that are frequently generated and 
stored in a second database. 

 

Fig. 1: The architecture of the traffic information system OLSIM. 
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These heuristic traffic patterns are aggregated data which are classified in 
different days (work days, holidays, etc.) and secondary data like road con-
structions, variable message signs, and special events. 

The second level of data fusion is done in the java applet at the website 
www.autobahn.nrw.de. Traffic state, construction areas, and road closures 
are integrated in one graphical user interface. Here each section is colored 
according to its calculated traffic state. Moreover, the construction areas and 
the road closures are marked in the map at their location. Their temporal 
parameters are shown in the status bar. The user can easily choose between 
the current traffic situation, the 30, and the 60 minute prognosis. 

The microscopic traffic simulation, on which the core of the information 
system is based, is focused on in the next sections. So, in the following the 
traffic simulator, the topology, and some special problems which arise when 
such a complex network is mapped in the computer are explained in detail. 

3. Simulation Model 

The kernel of the online simulation is an advanced and highly realistic traf-
fic simulation model. Because the data is fed into the simulator and proc-
essed by it every minute it has to be at least real-time. Due to their design 
cellular automata models are very efficient in large-scale network simula-
tions (5, 11, 20, 22, 24). The first cellular automaton model for traffic flow 
that was able to reproduce some characteristics of real traffic like jam for-
mation was suggested by Nagel and Schreckenberg (18) in 1992. Their 
model has been continuously refined in the last 10 years. The model we 
implemented in our simulator uses smaller cells in comparison with the 
original Nagel-Schreckenberg model, a slow-to-start rule, anticipation, and 
brake lights. With these extensions the cellular automaton traffic model is 
able to reproduce all empirically observed traffic states. Further, we use two 
classes of different vehicles, passenger cars and trucks, where the trucks 
have a lower maximum velocity and different lane changing rules. 

Smaller cells allow for a more realistic acceleration and more speed bins. 
Currently an elementary cell size of 1.5 m is used, in contrast to the 7.5 m in 
the original Nagel-Schreckenberg model. A vehicle occupies 2-5 conse-
quent cells. This corresponds to speed bins of 5.4 km/h and an acceleration 
of 1.5 m/s² (0-100 km/h in 19 s), which is of the same order as the “com-
fortable” acceleration of about 1 m/s². By using velocity dependent ran-
domization (1), realized through the introduction of ‘slow-to-start rules’, 
meta stable traffic flows can be reproduced in the simulation, a phenomenon 
observed in empirical studies of real traffic data (7, 12, 25). The inclusion of 
anticipation and brake lights (2, 15) in the modeling leads to a more realistic 
driving, i.e., the cars no longer determine their velocity solely in depend-
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ency of the distance to the next car in front, but also take regard to its speed 
and whether it is reducing its speed or not. 

In the Nagel-Schreckenberg model there is only one global parameter, 
the probability constant (or dawdling parameter) p, and every vehicle, say 
vehicle n, is completely determined by two parameters: its position xn(t) and 
its velocity vn(t) ∈ {0, 1, … ,vmax} at time t. When the vehicle n decides in the 
time-step t • t+1 how fast it should drive, it does this by considering the 
distance dn,m(t), i.e., the number of empty cells, to the next vehicle m in 
front. The modifications mentioned above of the Nagel-Schreckenberg 
model imply that we have to add some new parameters to the model. When 
the simulation algorithm decides whether a vehicle n should brake or not it 
does not only consider the distance to the next vehicle m in front, but esti-
mates how far the vehicle m will move during this time-step (anticipation). 
Note, that the moves are done in parallel, so the model remains free of colli-
sion. This leads to the effective gap 

)0,)(max()(:)( min
,, smmn

eff
mn dtvtdtd −+=  

seen by vehicle n at time t. In this formula dS is a safety distance and 

1))(),(min(:)( ,
min −= tvtdtv mlmm  

is a lower bound of how far the vehicle m will move during this time-step. 
dm,l(t) is the number of free cells between car m and car l in front. Brake 
lights are further components of the anticipating driving. They allow drivers 
to react to disturbances in front earlier by adjusting their speed. The variable 
bn(t )= on if car n has its brake lights on and bn(t)=off if they are off. 

Several empirical observations suggest that drivers react in a temporal- 
rather than a spatial-horizon (6, 17). For this reason the velocity-dependent 
temporal interaction horizon 

)),(min(:)( htvtt n
s
n =  

is introduced in the model. The constant h determines the temporal range of 
interaction with the brake light bm(t) of the car m ahead. Car n does only 
react to bm(t) if the time to reach the back of car m, assuming constant veloc-

ity (vn = const.) and car m standing still, is less than )(tt s
n , i.e., 
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The estimations for h vary from 6 s (6), 8 s (17), 9 s (10) to 11 s (4). An-
other estimation can be obtained from the analysis of the perception sight 
distance. In (21) velocity-dependent perception sight distances are presented 
that, for velocities up to 128 km/h, are larger than 9 s. Therefore h is set to 6 
s as a lower bound for the time headway (16). 

The third modification of the Nagel-Schreckenberg model implemented 
in the simulator is a velocity dependent randomization, which means that 
the probability constant p is replaced with a probability function dependent 
on the velocity of the vehicle. Further, the probability is also a function of 
the brake light of the next vehicle in front. In every time-step for every 
vehicle n with vehicle m next in front, the probability that the vehicle n 
brakes is 

⎪
⎩

⎪
⎨

⎧

=

<=

==
default.,

,0)(if,
),()( and)(if,

:))(),(( 0

,

d

n

s
n

h
mnmb

mn

p
tvp

ttttontbp
tbtvpp  

The parameter p0 tunes the upstream velocity of a wide moving jam and pd 
controls the strength of the fluctuations. 

With this parameter set the model is calibrated to the empirical data. The 
best agreement can be achieved for ds = 7 cells, h = 6, pb = 0.96, p0 = 0.5, 
and pd = 0.1. For a detailed analysis of the parameter set see (16). 

To sum up, to move the vehicles forward in the network the algorithm 
executes the following steps in parallel for all vehicles n: 

3.1. Move forward (drive): 

− Step 0: Initialization: 

For car n find the next car m in front. Set pn(t) := p(vn(t),bm(t)) and bn(t+1):= 
off. 

− Step 1: Acceleration: 
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− Step 2: Braking: 
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3
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Turn brake light on if appropriate: 

.:)1(then),()
3
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− Step 3: Randomization with probability pn(t): 
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Turn brake light on if appropriate: 

.:)1(then),
3
2()1(andif ontbtvtvpp nnnb =++<+=  

− Step 4: Move (drive): 

).1()(:)1( ++=+ tvtxtx nnn  

Free lane changes are needed so that vehicles can overtake slower driving 
passenger cars and trucks. When designing rules for the free lane changes, 
one should take care of that overtaking vehicles do not disturb the traffic on 
the lane they use to overtake to much, and one has to take account of Ger-
man laws, which prohibit overtaking a vehicle to the left. Further, it is ad-
vantageous to prohibit trucks to drive on the leftmost lane in the simulation, 
because a truck overtaking another truck forces all vehicles on the left lane 
to reduce their velocity and produces a deadlock that may not resolve for a 
long time (14). 

One more variable is needed for the free lane changes, ln ∈ {left, right, 
straight} notes if the vehicle n should change the lane during the actual 
time-step or not. This variable is not needed if the lane changes are executed 
sequentially, but we prefer a parallel update. For the left free lane changes 
the simulator executes the following steps parallel for all vehicles n: 
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3.2. Overtake on the lane to the left: 

− Step 0: Initialization:  

For car n find the next car m in front on the same lane, the next car s in front 
on the lane left to car n, and the next car r behind car s.  Set ln := straight. 

− Step 1: Check lane change: 

.t:set then
),()(and)()(and)()(and)(if ,,,

lefl
tvtdtvtdtdtvofftb

n

rnrn
eff

snmnnn

=

≥≥>=  

− Step 2: Do lane change: 

 left.  the tolane changecar let  then left, if nln =  

The definition of the gaps )(, td eff
sn  and )(, td eff

nr in the lane-change-blocks is 

an obvious extension of the above definition; one simply inserts a copy of 
the car n on its left or right side. These overtake rules used by the simulator 
can verbally be summed up as follows: first, a vehicle checks if it is hin-
dered by the predecessor on its own lane. Then it has to take into account 
the gap to the successor and to the predecessor on the lane to the left. If the 
gaps allow a safe change the vehicle moves to the left lane. For the right 
free lane changes the simulator executes the following steps parallel for all 
vehicles n: 

3.3. Return to a lane on the right: 

−  Step 0: Initialization: 

For car n find the next car m in front on the same lane, the next car s in front 
on the lane right to car n, and the next car r behind car s. Set ln := straight. 

− Step 1: Check lane change: 

.right:set then
),()(and))()(or6)((and3)(and)(if ,,,,
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− Step 2: Change lane:  

 right.  the tolane changecar let  then right, if nln =  

Thus, a vehicle always returns to the right lane if there is no disadvantage in 
regard to its velocity and it does not hinder any other vehicle by doing so. 

It should be noted, that it is not possible to first check for all lane changes 
to the left and to the right and then perform them all in parallel without 
doing collision detection and resolution. This would be necessary because 
there are autobahns with three lanes and more. To overcome this difficulty, 
the lane changes to the left, i.e., overtake, are given a higher priority than 
the lane changes to the right. For a systematic approach to multi-lane traffic, 
i.e., lane-changing rules, see, for example, (19). For a detailed discussion of 
the different models see (3, 9, 23) and the references therein. 

4. Validation of the Model 

A core requirement in the discussion of the simulation model is the detailed 
comparison with empirical data. Only if the model maps the real world 
sufficiently, it is capable to deal as the kernel of the online-simulation. Fur-
thermore, one of the most puzzling points for any model is to reproduce 
significant empirical data on a macroscopic and microscopic level as well as 
the empirical observed coexistence of stable traffic states and, especially, 
the upstream propagation of wide moving jams through both free flow and 
synchronized traffic with constant velocity and without disturbing these 
states (13). 

In analogy to the empirical setup, the simulation data are evaluated by a 
virtual loop detector, i.e., the number of cars passing a given link is meas-
ured as well as their velocity. This allows for the calculation of aggregated 
minute data of flow, speed and occupancy like for the empirical data. 

The simulation run emulates a few hours of highway traffic, including 
the realistic variation of the number of cars that are fed into the system. 
Thereby, a large input rate leads to the emergence of synchronized flow, 
whereas at small rates small short-living jams evolve, as expected, in the 
vicinity of on-ramps, because of the local perturbations (8). 
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The simulation shows that the empirical results can quantitatively be recov-
ered (see Fig. 2). A detailed analysis of the two dimensional region of syn-
chronized traffic in the fundamental diagram reveals a high correlation 
between the two lanes with respect to the velocity time-series of both lanes. 

5. Implementation of the Topology 

An important point in the design of a simulator is the representation of the 
road network. Therefore, the network is divided into links. The main links 
connect the junctions and highway intersections representing the carriage-
way. Each junction and intersection consists of another link, like on/off-
ramps or right/left-turn lanes. The attributes of each link are the length, the 
number of lanes, a possible speed limit, and the connecting links. In case of 
more than one connecting link, like at off-ramps or highway intersections, 
there is also a turning probability for each direction. The turning probability 
is calculated by taking into account the measured traffic data. All these 
spatial and functional data was collected to build a digital image of the 
topology of the whole network. 

 

Fig. 2: Comparison of the simulation results (a) with real traffic data (b). Diamonds corre-
spond to free flow, squares to synchronized traffic, and circles to wide jams. Each point repre-
sents the average over an one-minute interval. The empirical data are from a detector on the 

A40 near Moers junction (synchronized state) and near Bochum-Werne. 
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Area 34,000 km² 

Inhabitants 18,000,000 

On- and off-ramps 862 

Intersections 72 

Online loop detectors 4,000 

Offline loop detectors 200 

Number of links 3,698 

Overall length 2,250 km 

Tab. 1: Design parameters of the North Rhine-Westphalian autobahn network. 

Another crucial information concerns the positions of the installed loop 
detectors. They also have to be included in the digital map of the network. 
The positions in the simulation are called ‘checkpoints’, and at these check-
points the simulation is adapted to the measured traffic flow of the loop 
detectors. Tab. 1 shows some design parameters of the network. North 
Rhine-Westphalia is approximately one fifth of whole of Germany with 
respect to many numbers, e.g., number of cars, inhabitants, length of the 
autobahn network, et cetera. 

6. Additional Rules for Complex Real Networks 

The cellular automaton model for traffic flow used by the simulator was 
designed to be able to reproduce the main aspects of the fundamental dia-
gram for real traffic flows (vehicle flow as a function of vehicles per km) 
and the fundamental microscopic properties, like the time headway distribu-
tion. This ability was verified by testing it on topologically simple net-
works. When simulating the traffic on a large and topologically complex 
network, like the autobahn network in North Rhine-Westphalia, some ex-
tensions to the cellular automaton model have to be considered. One is the 
guidance of vehicles and another is a strategy to integrate the measured flow 
from the loop detectors into the simulation. 

A real driver usually has the intention to reach some goal with his driv-
ing.  This makes it necessary  to incorporate routes in the modeling. In prin- 
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ciple, there are two different strategies to solve this problem. One can assign 
an origin and a destination to the road user and then guide him through the 
network according to this route (20, 22). For our network origin-destination 
information with a sufficient temporal and spatial resolution is not avail-
able. Therefore, the vehicles are guided in the network according to the 
probabilities calculated on the basis of the measured data. This means that a 
vehicle is not guided through the whole network, but every time it reaches a 
new link it will decide in accordance with the measured probabilities how it 
leaves the link. 

To implement this we use forced lane changes. Forced lane changes are 
necessary so that the vehicles can drive from on-ramps on the autobahn, 
from the autobahn on off-ramps, when the autobahn narrows, and when 
vehicles drive from one particular section of the autobahn on another over 
an intersection. Forced lane changes differ from free lane changes in a fun-
damental way. While free lane changes give vehicles the opportunity to 
overtake vehicles driving slower and thus reduce disturbances, forced lane 
changes stem from the need to reach a node and are obviously an additional 
source for disturbances. 

The simulator uses gradually increasing harsh measures to force lane 
changes. At the beginning of an area where a vehicle could change to the 
target lane, it does so, if the gap is sufficiently large and no vehicle is se-
verely hindered. At the end of the area it will bully into any gap regardless 
of velocity differences. Further, a vehicle driving on its target lane should 
not leave the lane to overtake. An efficient implementation of this strategy 
is to store the lane change information in the cells. This gives a fast access 
through the coordinates of a vehicle. Of course this information depends on 
the node chosen and whether the vehicle is a truck or a passenger car. Be-
cause of this, every link has several versions of the lane change information. 

To incorporate the real world measurements from the loop detectors into 
the simulation vehicle-moving, inserting, and removing algorithms have to 
be applied. This is done at the so-called checkpoints, which are located at 
those places in the network where a complete cross-section is available, i.e., 
all lanes are covered by a loop detector. Every time, when checkpoint-data 
is provided, the simulator uses the measured values to adjust the traffic state 
in the simulation. The first step is to try to move vehicles behind the check-
point in front of it and vice versa. If this is not sufficient, vehicles are in-
serted or removed. This should be preferred to pure insert/removal strate-
gies, as these can completely fail due to positive feedback if a non-existing 
traffic jam is produced by the simulation. In this case the simulation meas-
ures a low flow in comparison with the real data, so vehicles are added 
periodically to the ever growing traffic jam leading to a total breakdown. 
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7. The Website www.autobahn.nrw.de 

The design of the simulator was financially supported by the Ministry of 
Transport, Energy and Spatial Planning of North Rhine-Westphalia, the 
reason being, that it wanted a novel web-based traffic information system 
for the public. This information system is provided by a Java applet at the 
URL www.autobahn.nrw.de (Fig. 3). The Java applet draws a map of North 
Rhine-Westphalia, where the autobahns are colored according to the level 
of service of the simulated traffic state, from light green for free flow, over 
dark green and yellow for dense and very dense synchronized flow, to red 
for a traffic jam. Additionally, after numerous requests, we integrated a 
color-blind mode, where dark green is replaced by dark grey and yellow by 
blue. Further, construction areas are drawn at the appropriate positions on 
the map and their estimated influence on the traffic is shown through red 
construction signs for a high risk of a traffic jam and green construction 
signs for a low risk. Road closures, which have a deep impact not only on 
the specific track the closure happens, but also on the traffic in a wide part 
of the network, are shown as well. 

To make orientation easier the number and name of each junction is also 
written in the status bar when the mouse moves over the pictogram of the 
junction. All this valuable information assists the road user to choose the 
best route and the best time for his trip. 

 

 

Fig. 3: The current traffic state is visualized at www.autobahn.nrw.de using a Java applet. 
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The rising accesses to OLSIM and the nearly throughout positive feedback 
show, that this information system is accepted by many people and used 
regularly. The daily requests increased from about 20,000 on work days at 
the beginning in September 2002 up to 200,000 regular accesses after the 
implementations of the 30 minute forecast in March 2003 and the 60 minute 
forecast in December 2003. The positive results are underlined by TV-
stations, newspapers, and magazines which have made positive tests where 
they compared the actual traffic state to the traffic state presented by our 
simulation. 

8. Summary 

In this paper we present a new advanced traffic information system OLSIM 
which gives the internet user the opportunity to get the information about 
the current traffic state and a 30 and 60 minute prognosis of the autobahn 
network of North Rhine-Westphalia. The system rests upon a microscopic 
traffic simulator of the autobahn network in North Rhine-Westphalia. The 
simulator uses an advanced cellular automaton model of traffic flow and 
adjusts the traffic state in accordance with measurements of the real traffic 
flow provided by 4,000 loop detectors installed locally on the autobahn. The 
cellular automaton model, the abstraction of the network, the guidance of 
the vehicles, and the data integration strategies to periodically adjust the 
traffic flow in the simulation in accordance with the measured flow on the 
autobahn were discussed, as well as some details on the efficient implemen-
tation of the dynamics and the presentation of the simulated traffic state to 
the public. A graphical user interface implemented by a Java applet can be 
accessed by every internet user. In a simple to navigate window the user can 
choose between the current traffic state, the 30, and the 60 minute progno-
sis. Additional information like road works can be chosen with a simple 
click. 
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Berechnung von Feynman-Diagrammen mit
FeynArts, FormCalc und LoopTools

Thomas Hahn
Max-Planck-Institut für Physik, München

Abstract

In diesem Beitrag werden die drei Programmpakete FeynArts, FormCalc und LoopTools vor-
gestellt, mit denen die Berechnung von Feynman-Diagrammen mit bis zu einer Schleife sehr
weitgehend automatisiert werden kann. Solche Berechnungen sind für die Überprüfung der ge-
genwärtigen Theorie der Elementarteilchen, d.h. der fundamentalen Naturgesetze unabdingbar,
ohne automatisierte Schritte jedoch sehr aufwendig und fehleranfällig. Durch die Automatisie-
rung können binnen Minuten Ergebnisse ausgerechnet werden, für die früher Mannjahre nötig
waren.

1 Einführung

In der Teilchenphysik werden quantenfeldtheoretische Modelle benutzt, um
die Elementarteilchen und ihre Wechselwirkungen zu beschreiben. In Streu-
experimenten wird hingegen z.B. der Wirkungsquerschnitt gemessen, das
ist vereinfacht ausgedrückt die (geeignet normierte) Wahrscheinlichkeit, be-
stimmte Teilchen im Detektor zu sehen. Um nun die theoretische Vorher-
sage mit dem Experiment vergleichen und damit die Theorie testen zu kön-
nen, steht man vor dem Problem, aus dem theoretischen Modell zunächst
den Streuoperator und dann daraus den Wirkungsquerschnitt zu berechnen.
Dies wird in der Regel störungstheoretisch mit Hilfe von Feynman-Diagram-
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men gemacht, d.h. man betrachtet die Wechselwirkung der Teilchen als eine
kleine Störung ihrer andernfalls freien Ausbreitung und entwickelt den Streu-
operator mathematisch in eine Reihe in der Kopplungsstärke.

Beispiel: Das folgende Feynman-Diagramm trägt zum Wirkungsquer-
schnitt des Prozesses e+e− → t̄t (Top–Antitop-Paarproduktion an einem
Elektron–Positron-Beschleuniger) bei:

e

e

t

tγ

Dieses Diagramm gibt nicht nur ein intuitives Bild von dem Streuprozeß, es
läßt sich auch nach Regeln, die durch das Modell festgelegt sind, eindeutig in
Formeln, die sog. Feynman-Amplituden, übersetzen. Insbesondere symboli-
siert jeder der Punkte (•) eine Kopplung der Stärke

√
α zwischen den Fermio-

nen und dem zwischen ihnen ausgetauschten Photon (γ), wobei α � 1/137
die Feinstrukturkonstante ist. Obiges Diagramm ist somit insgesamt von der
Ordnung α. In der nächsten Ordnung gibt es schon wesentlich mehr Dia-
gramme, von denen hier nur drei Repräsentanten gezeigt sind:
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Hier hat jedes Diagramm vier Punkte, ist also von Ordnung α2, gleichzeitig
erkennt man aber auch, daß jetzt jedes Diagramm eine geschlossene „Schlei-
fe“ besitzt. Das ist kein Zufall, denn die Störungsreihe ist gleichzeitig auch
eine Entwicklung in der Anzahl der Schleifen. Man spricht von „Baumdia-
grammen“ (keine Schleife), „Ein-Schleifen-Diagrammen,“ „Zwei-Schleifen-
Diagrammen“ usw. Physikalisch lassen sich die Schleifen als Quantenfluk-
tuationen interpretieren, im linken Diagramm z.B. spaltet das intermediäre
Photon in ein virtuelles Fermion–Antifermion-Paar (f f̄ ) auf.

Je mehr Schleifen man mitnimmt, desto höher ist die Ordnung in α und
desto genauer das Ergebnis. Dies „bezahlt“ man jedoch mit der Anzahl der zu
berechnenden Diagramme, die mit der Anzahl der Schleifen rasch anwächst.

Im folgenden werden die drei Programmpakete FeynArts, FormCalc und
LoopTools vorgestellt, mit denen derartige Rechnungen mit bis zu einer
Schleife sehr weitgehend automatisiert werden können. Dazu werden zu-
nächst in den Abschnitten 2 und 3 die mathematischen Probleme und das
algorithmische Vorgehen bei der Berechnung von Feynman-Diagrammen be-
schrieben. In Abschnitt 4 wird dann die Benutzung von FeynArts, FormCalc

30



und LoopTools beschrieben. Abschnitt 5 gibt einen Abriß über die Entwick-
lung und Abschnitt 6 einen Überblick über Anwendungen der Programme.

2 Feynman-diagrammatische Rechnungen

Aus der mathematischen Perspektive sind nur die Integrale, die den Schlei-
fen in den Feynman-Diagrammen entsprechen, „schwierig.“ Bereits auf dem
Zwei-Schleifen-Niveau ist es nicht mehr allgemein möglich, die Integrale
auszurechnen, d.h. sie durch elementare Funktionen auszudrücken.

Die Ein-Schleifen-Integrale sind jedoch bekannt, sie lassen sich durch Lo-
garithmen und Dilogarithmen ausdrücken. Es ist daher möglich, eine Rechen-
vorschrift für ein beliebiges Diagramm mit bis zu einer Schleife anzugeben,
d.h. die Berechnung ist streng algorithmisch und läßt sich im Prinzip voll-
ständig automatisieren. Dies ist zu keinem geringen Teil das Verdienst der
Herren ’t Hooft und Veltman, die u.a. dafür 1999 den Nobelpreis erhielten.

Abgesehen von den Integralen läßt sich die verbleibende Rechnung mit
algebraischen Methoden bestreiten. Was das Leben dennoch schwer macht,
ist die extrem schnell anwachsende Anzahl der Feynman-Diagramme, wenn
man Prozesse mit mehr äußeren Linien oder mehr Schleifen, oder Modelle
mit mehr Teilchen und Kopplungen betrachtet. Um eine Vorstellung davon
zu geben, ist in der folgenden Tabelle die Anzahl der Ein-Schleifen-Topolo-
gien für einen 2 → 2-, 2 → 3- und 2 → 4-Prozeß∗ aufgelistet, das ist die
Anzahl der Möglichkeiten, die vorgegebenen äußeren Linien miteinander zu
verbinden, so daß die resultierenden Diagramme genau eine Schleife besit-
zen:

Prozeß Anzahl Schleifen Anzahl der Topologien
2 → 2 1 99
2 → 3 1 947
2 → 4 1 11460

Noch dramatischer wächst die Zahl der Topologien mit der Anzahl der Schlei-
fen:

Prozeß Anzahl Schleifen Anzahl der Topologien
2 → 2 0 4
2 → 2 1 99
2 → 2 2 2214
2 → 2 3 50051

Es ist eindeutig die Kombinatorik, die auch auf moderner Hardware die Mach-
barkeit auf relativ kleine Werte des Produkts (Anzahl der Schleifen)·
(Anzahl der äußeren Linien) beschränkt.

∗Die Notation „m → n“ bezeichnet die Zahl der einlaufenden bzw. auslaufenden Teilchen.
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Die in Abschnitt 4 vorgestellten Programme sind bisher auf Ein-Schleifen-
Rechnungen beschränkt, da wie erwähnt die höheren Schleifenintegrale der-
zeit nur teilweise bekannt sind. Auf dem Ein-Schleifen-Niveau ist momentan
die Berechnung von 1 → 2- und 2 → 2-Prozessen ohne jede Einschränkung
möglich. Für 2 → 3-Prozesse fehlt noch eine letzte Komponente, das Fünf-
Punkt-Integral, dessen Einbau in das bestehende Programm bereits in Arbeit
ist. Einige physikalisch relevante 2 → 3-Rechnungen benötigen diese Funk-
tion allerdings nicht und sind schon jetzt möglich, z.B. [1]. Mit einer erst
kürzlich implementierten neuen Methode zur Vereinfachung von Fermion-
ketten scheint es möglich, auch die sehr rechenaufwendigen 2 → 4-Prozesse
mit einer Schleife ins Auge zu fassen – hier wäre aus physikalischer Sicht be-
sonders die Berechnung von e+e− → 4 Fermionen wünschenswert – jedoch
wird dies angesichts der enormen Zahl von Feynman-Diagrammen wohl noch
einige Zeit und Ideen erfordern.

3 Schritte zur Berechnung eines Feynman-Diagramms

Im folgenden werden die Schritte zur Erzeugung und Berechnung der Feyn-
man-Diagramme aufgelistet, wie man sie „mit Hand“ anwenden würde. Die
Implementierung in FeynArts, FormCalc und LoopTools, die im nächsten Ab-
schnitt vorgestellt wird, ist eng an dieses Schema angelehnt.

1. Stelle eine Liste aller Diagramme auf, die zu dem betrachteten Streuprozeß
beitragen:
a) Zeichne alle Möglichkeiten, die einlaufenden mit den auslaufenden Li-
nien so zu verbinden, daß die gewünschte Anzahl von Schleifen entsteht.
b) Bestimme anhand des Modells, welche Teilchen auf jeder Linie „lau-
fen“ können, wobei die äußeren Linien mit den Teilchen im Anfangs- und
Endzustand des betrachteten Streuprozesses identifiziert werden.

2. Übersetze die erhaltenen Diagramme mittels der Feynman-Regeln, die aus
dem Modell folgen, in Formeln.

3. Vereinfache die Formeln analytisch. Dies geschieht vor allem in Hinblick
auf die folgende numerische Auswertung, so müssen z.B. offene Indizes
kontrahiert werden, tensorielle Objekte zerlegt werden usw.

4. Schreibe ein Programm, das die Formeln numerisch auswertet.

Offensichtlich sind hierbei Probleme sehr verschiedener Natur zu lösen, z.B.
ist die Diagrammerzeugung eine topologisch-kombinatorische Aufgabe oder
die Anwendung der Feynman-Regeln ein Datenbankzugriff. Hinzu kommt,
daß die Amplitude algebraische Objekte enthält, die für die direkte numeri-
sche Auswertung ungeeignet sind, wie Tensoren oder Generatoren von Sym-
metriegruppen, man aber andererseits eine schnelle numerische Auswertung
des Endergebnisses braucht, z.B. für Monte-Carlo-Generatoren, wo u.U. meh-
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rere Millionen Events gesampled werden müssen.
Ein wichtiges Hilfsmittel bei der Umsetzung obigen Schemas ist daher

die Computeralgebra, mit der die strukturellen und algebraischen Operatio-
nen bewältigt werden, in Kombination mit schneller und präziser numerischer
Auswertung („Number Crunching“) in einer Hochsprache.

4 FeynArts, FormCalc und LoopTools

FeynArts, FormCalc und LoopTools sind drei Programmpakete, mit denen
sich Feynman-Diagramme erzeugen, analytisch vereinfachen und numerisch
auswerten lassen. Mit Hilfe dieser Programme ist es möglich, Streuprozesse
mit bis zu einer Schleife sehr weitgehend zu automatisieren und damit eine
Arbeit, die noch vor kurzem in Mannjahren bemessen wurde, in Minuten zu
erledigen.

Die modulare Unterteilung in drei verschiedene Programmpakete ist nicht
nur von der Art der Aufgaben her sinnvoll, vielmehr werden von vielen Be-
nutzern nur Teile des Programms benutzt, so wird FeynArts etwa auch für
die Erzeugung von Zwei-Schleifen-Diagrammen eingesetzt [2], selbst wenn
diese derzeit nicht von FormCalc vereinfacht werden können.

FeynArts und FormCalc sind Mathematica-Programme und auch Loop-
Tools besitzt ein Mathematica-Interface. Dieser Umstand ist sehr hilfreich,
da er dem Benutzer erlaubt, die erhaltenen Ausdrücke an praktisch jeder be-
liebigen Stelle mit Hilfe des Mathematica-Befehlssatzes zu modifizieren. Ein
Beispiel: Um dem Higgs-Propagator eine endliche Breite zu geben, muß man
lediglich das Endergebnis mit der folgenden Substitutionsregel in Mathema-
tica transformieren: Den[p_, MH2] -> Den[p, MH2 - I MH GammaH].

4.1 FeynArts

FeynArts erzeugt Feynman-Diagramme und -Amplituden mit derzeit bis zu
drei Schleifen. Die Information über das betrachtete Modell wird aus ei-
ner speziellen Datei, dem „Model-File,“ gelesen. Derzeit existieren Mo-
del-Files für das elektroschwache Standardmodell mit und ohne QCD (ein-
schließlich Counter-Termen), das Minimale Supersymmetrische Standard-
modell (MSSM) und das Zwei-Higgs-Dublett-Modell. Der Benutzer kann
aber auch eigene Model-Files erstellen oder vorgegebene modifizieren. Au-
ßerdem steht ein Hilfsprogramm zur Verfügung, mit dem das Model-File aus
der Lagrangedichte der zugrundeliegenden Theorie erzeugt werden kann.

Die Erzeugung der Feynman-Amplituden verläuft im wesentlichen wie in
Abschnitt 3 skizziert: Zunächst werden mit der FeynArts-Funktion Cre-
ateTopologies die Topologien mit der gewünschten Anzahl äußerer Bei-
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ne und Schleifen erzeugt, z.B. die Baum-Topologien (null Schleifen) für einen
2 → 2-Prozeß:

top = CreateTopologies[0, 2 -> 2]

Die so erhaltenen Topologien lassen sich mit der Paint-Funktion zeichnen:

Die Diagramme können entweder am Bildschirm, als PostScript- oder als
LATEX-Datei ausgegeben werden, wobei letzteres Format problemlos in Publi-
kationen eingebunden sowie auf einfache Weise nachbearbeitet werden kann.

In diese Topologien werden nun Felder eingesetzt, d.h. es werden zu ei-
nem vorgegebenen Streuprozeß alle im Modell möglichen Kombinationen ge-
sucht, die Linien der Topologie mit Feldern des Modells zu bestücken. Dazu
wird die Funktion InsertFields auf das Ergebnis von CreateTopo-
logies angewendet:

ins = InsertFields[top,
{-F[2,{1}], F[2,{1}]} -> {-F[3,{3}], F[3,{3}]}]

Hier werden die Diagramme für den Prozeß e+e− → t̄t aus den in top
gespeicherten 2 → 2-Topologien erzeugt. Als Model-File wird die Vor-
einstellung SM.mod, das elektroschwache Standardmodell benutzt. Dieses
gibt auch die Bezeichnung der Felder vor: in SM.mod heißt das Elektron
F[2,{1}], es ist also das erste Mitglied der Fermionklasse Nr. 2, die aus
Elektron, Myon und Tauon besteht, und analog heißt das Top-Quark
F[3,{3}], wobei die dritte Fermionklasse das Up-, Charm- und Top-Quark
umfaßt. -F[2,{1}] und -F[3,{3}] sind die jeweiligen Antiteilchen.

Auch die Ergebnisse von InsertFields lassen sich mit Paint zeich-
nen. Man sieht, daß einige Topologien nicht realisiert werden können, z.B.
weil die Erhaltung der elektrischen Ladung verletzt wäre, andere dagegen
mehrfach vorkommen:

e

e

t

tH
e

e

t

tG0

e

e

t

tγ
e

e

t

tZ

Schließlich müssen die Feynman-Regeln angewandt werden, um die Ampli-
tuden zu erhalten. Das geht mit

amp = CreateFeynAmp[ins]

34



TECHNISCHER EXKURS Ein für den Benutzer zwar weitgehend unsicht-
bares, für die weitere Vereinfachung aber enorm wichtiges Konzept ist die
Unterscheidung von drei Ebenen („Levels“) von Feldern. Auf dem „Generic
Level“ werden nur die Typen der Felder spezifiziert, z.B. F = Fermion oder S
= Skalarfeld. Auf dem „Classes Level“ werden dann Klassen solcher Felder
betrachtet, z.B. F[3] = die Klasse der Quarks mit Isospin + 1

2 . Schließlich
können auf dem „Particles Level“ einzelne Repräsentanten der Klassen aus-
gewählt werden, so z.B. F[3,{3}] = das Top-Quark.

Da die kinematische Struktur eines Diagramms schon auf dem Generic
Level festliegt, muß die aufwendige Vereinfachung der kinematischen Ob-
jekte wie z.B. die Tensorreduktion (s.u.) nur für die generischen Diagram-
me durchgeführt werden, von denen es in der Regel erheblich weniger gibt.
Von den vier zuvor gezeigten Diagrammen etwa müssen nur zwei wirklich
ausgerechnet werden: anstelle der linken zwei Diagramme rechnet man nur
ein Diagramm mit Austausch eines generischen Skalarfelds aus und analog
für die rechten zwei Diagramme. Durch Einsetzen der tatsächlichen Kopp-
lungskonstanten in die generische Amplitude erhält man den vollständigen
Ausdruck für alle vier Diagramme.

4.2 FormCalc

FormCalc vereinfacht die von FeynArts ausgegebenen Amplituden analytisch.
Das Ergebnis kann entweder direkt als Mathematica-Formel weiterverwendet
werden (z.B. für bestimmte Konsistenzchecks) oder als Fortran-Programm
zur Berechnung des Wirkungsquerschnitts ausgegeben werden. In der ana-
lytischen Vereinfachung werden konkret folgende Umformungen vorgenom-
men (für mathematische Details siehe z.B. [3]):

– Kontraktion aller Indizes,
– Berechnung der fermionischen Spuren,
– Vereinfachung der äußeren Spinor- und Gruppenstrukturen,
– Reduktion der Tensorintegrale auf skalare Koeffizienten,
– Einführen von Abkürzungen.

Das Einführen von Abkürzungen ist ein sehr wesentlicher Punkt, mit dem die
Größe des Ergebnisses drastisch reduziert werden kann.

Alle diese Operationen sind in einer Funktion für den Benutzer zusammen-
gefaßt, die auf das Ergebnis von CreateFeynAmp angewendet wird:

result = CalcFeynAmp[amp]

Intern delegiert CalcFeynAmp viele Aufgaben an das Computeralgebra-
Programm FORM [4] (daher der Name FormCalc), das zwar nur einen be-
grenzten, speziell auf die Anwendungen in der Teilchenphysik zugeschnit-
tenen Befehlssatz hat, dafür aber sehr schnell ist und auch mit sehr großen
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Ausdrücken mühelos fertig wird. FORM ist jedoch nicht unbedingt leicht zu
programmieren, daher bleibt der Austausch von Programmcode und Daten
zwischen Mathematica und FORM dem Benutzer erspart.

Zur weiteren numerischen Auswertung wird das Ergebnis von Calc-
FeynAmp als Fortran-Programm ausgegeben:

SetupCodeDir["fortrandir"]
WriteSquaredME[result, {}, Abbr[], "fortrandir"]

SetupCodeDir legt ein Unterverzeichnis namens fortrandir an und
kopiert die notwendigen Treiberprogramme dort hinein. Danach schreibt
WriteSquaredME das Ergebnis der obigen Rechnung zusammen mit den
von CalcFeynAmp eingeführten Abkürzungen, die mit Abbr[] abgeru-
fen werden, als Fortran-Code in dieses Verzeichnis. Dazu wird ein entspre-
chendes makefile angelegt, wodurch auch die Kompilierung automatisiert
wird. Ein wesentlicher Punkt ist, daß die von WriteSquaredME ausgege-
benen Dateien in sich völlig abgeschlossen sind und nicht mehr von Hand
nachbearbeitet werden müssen, was viele „menschliche“ Fehlerquellen aus-
schließt. Hingegen werden die Treiberprogramme vom Benutzer angepaßt,
dort müssen z.B. die numerischen Werte der Modellparameter angegeben
werden.

Von den Anpassungen der Treiber abgesehen genügt ein

./configure
make

im neu angelegten Verzeichnis fortrandir, um das erzeugte Programm
zu kompilieren. Ausgeführt wird es z.B. mit

./run uuuu 350 1000

was den Wirkungsquerschnitt für unpolarisierte äußere Teilchen im Energie-
bereich von 350 bis 1000 GeV berechnet. Man erhält ein Datenfile run-
tot.pol=UUUU.E=00350-01000, das in Abb. 1 geplottet ist.

Der gesamte Ablauf, von CreateTopologies bis zum Plotten des Wir-
kungsquerschnitts, dauert nur wenige Minuten.

Der generierte Fortran-Code wird von FormCalc in verschiedener Weise
optimiert, so werden z.B. mehrfach vorkommende Unterausdrücke nur ein-
mal berechnet, ebenso wird die Liste der Abkürzungen so gruppiert, daß
beim Durchlaufen der internen Schleifen nur die sich wirklich ändernden Tei-
le neu berechnet werden müssen. Bei den Treiberprogrammen wurde großer
Wert auf modularen Aufbau in einer übersichtlichen und gut dokumentier-
ten Programmierweise gelegt. Alles in allem wird damit das Ziel verfolgt,
ein effizientes und gleichzeitig für den Benutzer möglichst durchschauba-
res Programm zu erstellen, denn es gibt viele Fälle, in denen der Benutzer
das Programm nicht in seiner eigentlichen Funktion benutzen will, sondern
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Abb. 1: Der Wirkungsquerschnitt des Streuprozesses e+e− → t̄t

es entweder als Modul in existierende Programme einbinden oder aber zu-
sätzliche Funktionalität einbauen möchte. Die Implementierung des Fortran-
Generators einschließlich der zugehörigen Treiberprogramme zählt daher zu
den Programmteilen von FormCalc, die im Laufe der Versionen die größten
Änderungen durchgemacht haben.

Schließlich ist noch ein Wort über die Wahl der Sprache angebracht: For-
tran 77 wird von vielen Programmierern als „Dinosaurier“ unter den Pro-
grammiersprachen verschmäht, dabei ist es im großen und ganzen für genau
die Aufgabe optimiert [5], die hier gebraucht wird: „FORmula TRANslation,“
effizientes und präzises Auswerten langer Formeln. Beispielsweise sind in
Fortran so wichtige Dinge wie komplexe Zahlen schon eingebaut. Dazu exi-
stieren hervorragende Compiler für fast alle Plattformen. Unter Physikern ist
Fortran nach wie vor weit verbreitet, außerdem es ist relativ unkompliziert,
Fortran-Routinen auch von anderen Sprachen aus aufzurufen.

4.3 LoopTools

Bislang wurde überhaupt noch nicht auf die in Abschnitt 2 erwähnten Ein-
Schleifen-Integrale eingegangen. Diese werden von FormCalc durch spezi-
elle Funktionen der mathematischen Physik, die Passarino–Veltman-Funk-
tionen, ausgedrückt, ansonsten aber weitgehend als „Black Boxes“ behan-
delt. Die numerische Implementierung dieser Funktionen geschieht durch die
LoopTools-Bibliothek, die alle Ein-Schleifen-Integrale bis zur Vier-Punkt-
Funktion zur Verfügung stellt, und zwar einschließlich aller Koeffizienten-
Funktionen, die bei der Zerlegung der Tensorintegrale bis zur vierten Stufe
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anfallen. Zusätzlich enthält es die Ableitungen der Zwei-Punkt-Funktionen,
die zur Berechnung der Renormierungskonstanten gebraucht werden.

LoopTools ist eine Fortran-Bibliothek, stellt dem Benutzer aber neben dem
Fortran- auch ein C++- und Mathematica-Interface zur Verfügung. Insbeson-
dere das Mathematica-Interface ist sehr einfach zu bedienen: man muß nur
mit Install["LoopTools"] das Package laden, danach stehen alle Ein-
Schleifen-Integrale als Mathematica-Funktionen zur Verfügung.

Für die skalaren Integrale greift LoopTools auf die FF-Bibliothek [6] zu-
rück, in der diese in numerisch stabiler Weise implementiert und für viele
Fälle getestet sind. Es sollte hierbei erwähnt werden, daß die numerische Be-
handlung nicht einfach ist, da in verschiedenen Bereichen des Phasenraums
unterschiedliche Parametrisierungen bzw. Näherungen benötigt werden, etwa
nahe der Schwelle, oder wenn zwei Impulse fast kollinear sind. Um nume-
rische Stabilität zu erreichen, müssen also viele Spezialfälle berücksichtigt
werden. Aus diesen Gründen besitzt LoopTools auch eine „check“-Version,
in der alle skalaren Integrale durch eine zweite, von FF unabhängige Imple-
mentierung kontrollgerechnet werden und alle Diskrepanzen oberhalb einer
vom Benutzer wählbaren Schranke ausgegeben werden.

Mit Compilern, die den Datentyp REAL*16 zur Verfügung stellen, ist
LoopTools auch in einer vierfach-genauen Version verfügbar. Dies wird in
seltenen Fällen gebraucht, wenn es sehr große Kompensationen innerhalb ei-
ner Amplitude gibt.

Da die Berechnung der Ein-Schleifen-Integrale einen beträchtlichen Teil
der CPU-Zeit ausmachen kann, wird intern ein Cache-Mechanismus verwen-
det, um Mehrfachberechnungen zu vermeiden, wo es insbesondere bei der
Berechnung der Tensor-Koeffizientenfunktionen einen beträchtlichen Über-
lapp von Zwischenergebnissen gibt.

5 Historische Entwicklung

5.1 FeynArts

FeynArts hat die längste Geschichte der drei Programme und geht auf die
Würzburger Arbeitsgruppe um M. Böhm zurück. H. Eck und J. Küblbeck
entwickelten 1990 FeynArts 1.0 als einen Diagrammgenerator für das elek-
troschwache Standardmodell [7]. Wesentlich verallgemeinert wurde Feyn-
Arts 1995 durch neue Konzepte, die in die Version 2 einflossen [8]. So wur-
de z.B. speziell für FeynArts der „Fermion-Flip-Algorithmus“ entwickelt [9],
der es erlaubt, Diagramme für Theorien zu erzeugen, die fermionzahlverlet-
zende Kopplungen besitzen, dazu gehören insbesondere supersymmetrische
Modelle. Danach verließen Eck und Küblbeck jedoch die Physik und die
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Entwicklung von FeynArts wurde erst 1998 von T. Hahn weitergeführt. Die
vorläufig letzten großen Änderungen waren die grundlegende Umgestaltung
des Grafikteils [10], die 2000 von Hahn im Rahmen eines Forschungsaufent-
haltes bei Wolfram Research vorgenommen wurde und mit der die fast immer
anfallende Nachbearbeitung der Diagramme für die Publikation entscheidend
vereinfacht wurde, sowie die Fertigstellung des MSSM-Model-Files [11].

FeynArts ist fast vollständig in Mathematica geschrieben, nur der Topo-
logieeditor ist in Java kodiert. Im Vergleich zu anderen Diagrammgenerato-
ren besitzt FeynArts ausgezeichnete Grafikfähigkeiten sowie für die Behand-
lung grundlegender Fragen der Quantenfeldtheorie nützliche Features wie
z.B. Hintergrundfelder und Mischungspropagatoren.

FeynArts ist ein Open-Source-Programm und auf http://www.feynarts.de
erhältlich. Derzeit wird das Programm 150 bis 200 mal im Monat herunter-
geladen (Anzahl der erfolgreichen Downloads des .tar.gz-Files).

5.2 FormCalc

Im Rahmen seiner Diplomarbeit 1994 [12] war T. Hahn damit konfrontiert,
Box-Diagramme mit vier internen Fermionlinien auszurechnen. Das damals
für die Berechnung der mit FeynArts erzeugten Feynman-Diagramme benutz-
te Programm FeynCalc [13] brauchte für ein einziges solches Diagramm ca.
eine Woche auf der schnellsten Workstation im Würzburger Rechenzentrum.
Als sich hinterher auch noch herausstellte, daß aufgrund eines ungültig ge-
setzten Flags in FeynCalc das Ergebnis Makulatur war, entwickelte Hahn in
zwei Wochen einen rohen Prototypen des Programms, das heute FormCalc
heißt. Wichtigste Neuerung war, daß für die langwierigen Vereinfachungen
(besonders die fermionischen Spuren) die Amplitude an FORM geschickt
und das Ergebnis hinterher wieder in Mathematica eingelesen wurde. Die-
ses Programm brauchte einige Minuten für die besagten Box-Diagramme und
schlug somit selbst einschließlich seiner Entwicklungszeit FeynCalc um Län-
gen. Weil es FORM benutzte, aber im Prinzip dasselbe tat wie FeynCalc,
erhielt es den Namen FormCalc.

Nach einiger Weiterentwicklung im Zuge der Doktorarbeit wurde das Pro-
gramm 1996 im Internet zur Verfügung gestellt. 1998 wurde in Kollaboration
mit der Universität Granada das Verfahren der differentiellen Renormierung
in FormCalc eingebaut [14]. Damit war FormCalc in der Lage, auch super-
symmetrische Amplituden zu berechnen, für die das übliche Verfahren der
dimensionalen Regularisierung nicht anwendbar ist. Weitere Verbesserungen
betrafen vor allem die Code-Generierung, wodurch die Rechnung erheblich
stärker als zuvor automatisiert werden konnte.

Die jüngste, erst kürzlich fertiggestellte Neuerung ist der Einbau des Weyl–
van-der-Waerden-Formalismus [15]. Mit diesem kann die Berechnung von
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Diagrammen mit äußeren Fermionen drastisch vereinfacht werden. Es ist un-
schwer, Fälle zu finden, in denen der herkömmliche Formalismus mit He-
lizitätsamplituden schon für einen 2 → 3-Prozeß in die Knie geht, weil
z.B. 20000 Helizitäts-Matrixelemente berechnet werden müßten. Außerdem
erhält man mit dem Weyl–van-der-Waerden-Formalismus polarisierte Wir-
kungsquerschnitte, also die ganze Spin-Physik, ohne zusätzlichen Rechen-
aufwand.

FormCalc ist in Mathematica, FORM, C und Fortran geschrieben und be-
nutzt das standardisierte MathLink-Protokoll, um Daten zwischen Mathema-
tica und FORM auszutauschen. Wie FeynArts ist auch FormCalc ein Open-
Source-Programm und steht auf der Webseite http://www.feynarts.de/form-
calc zur Verfügung.

5.3 LoopTools

Die von G.J. van Oldenborgh geschriebene FF-Bibliothek war lange Zeit die
einzige öffentlich verfügbare Implementierung der Ein-Schleifen-Integrale.
Allerdings enthielt die Bibliothek neben den skalaren Integralen nur weni-
ge Tensorkoeffizienten. Die Routinen erforderten außerdem eine umfangrei-
che Deklaration der Arrays, in denen die Parameter übergeben wurden, man
konnte also nicht „mal schnell“ eine Funktion aufrufen.

Für die automatische Fortran-Code-Generierung durch FormCalc war dies
ein Hindernis, so daß T. Hahn 1995 zunächst die Tensorkoeffizienten hinzu-
fügte und sukzessive auch das Interface verbesserte. Später folgte ein auto-
conf-artiges configure-Skript, mit dem die zuvor zahlreichen Probleme
bei der Kompilierung auf unterschiedlichen Plattformen weitgehend elimi-
niert wurden. (So kostete die Installation von LoopTools auf dem AIX-Sy-
stem des MPI für Physik 1997 noch fast einen ganzen Tag.)

Eine besonders wichtige Erweiterung, die derzeit in Arbeit ist, ist der Ein-
bau der Fünf-Punkt-Funktion, die für 2 → 3-Prozesse benötigt wird. Eine
numerisch stabile Version dieser Funktion existiert bereits [16] und muß nur
noch implementiert und getestet werden.

Die LoopTools-Bibliothek ist in Fortran geschrieben. Lediglich die für
den internen Cache-Mechanismus nötige dynamische Speicherallozierung ist
(mit einigen Tricks) durch eine C-Funktion gelöst, da Fortran 77 nur statische
Arrays kennt. Das C++-Interface besteht aus einer einzigen Header-Datei,
die nur ein paar Inline-Funktionen als „Wrapper“ für die Bibliotheksroutinen
enthält. Das Mathematica-Interface ist ein C-Programm, das das MathLink-
Protokoll zur Interaktion mit Mathematica benutzt. LoopTools ist ebenfalls
ein Open-Source-Programm und steht auf http://www.feynarts.de/looptools
zur Verfügung.
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6 Anwendungen

6.1 Rechnungen im Standardmodell

Mit der jüngsten Generation von Beschleunigern, besonders seit LEP, liegen
für viele Observable sehr genaue experimentelle Daten vor. Das hat natürlich
auch den Bedarf an theoretischer Genauigkeit gesteigert, so daß Ein-Schlei-
fen-Rechnungen im Standardmodell heute in vielen Fällen eine Minimalan-
forderung darstellen.

Ein-Schleifen-Rechnungen im Standardmodell umfassen typischerweise
einige 10 bis 100 Diagramme, was bei Rechnung mit Hand einem Aufwand
von einem bis wenigen Mannjahren entspricht, also ein typisches Diplom-
oder Doktorarbeitsthema. Es gibt aber auch Beispiele, die ohne den Ein-
satz von automatisierten Programmen kaum denkbar sind, z.B. die elastische
W–W-Streuung, wo auf Ein-Schleifen-Niveau ca. 1000 Feynman-Diagram-
me beitragen [17].

Für das Standardmodell existiert eine große Zahl von Originalarbeiten, die
ganz oder teilweise mit FeynArts, FormCalc und LoopTools berechnet wurden
[18]. Natürlich wäre es vermessen, bei der Komplexität dieser Programme
davon auszugehen, daß selbige „fehlerfrei“ sind, daher wurden und werden
zur Kontrolle auch viele bekannte Ergebnisse nachgerechnet (siehe z.B. [19])
und die Programme ggf. nachgebessert. Generell ist die Zuverlässigkeit der
Ergebnisse aber sehr hoch, so wurden auch schon des öfteren Fehler in bereits
publizierten Rechnungen gefunden, etwa in [20].

6.2 Rechnungen im Minimalen Supersymmetrischen Standard-
modell

Das Minimale Supersymmetrische Standardmodell (MSSM) hat ein mehr als
doppelt so großes Teilchenspektrum wie das Standardmodell, da abgesehen
von einem größeren Higgs-Sektor die Supersymmetrie zu jedem Teilchen
einen sog. Superpartner postuliert.

Als Folge des großen Teilchenspektrums besitzt das MSSM über 400
Kopplungen, was Rechnungen mit Hand im allgemeinen Fall, d.h. ohne daß
man nur bestimmte Sektoren des MSSM betrachtet (oder andere Näherungen
macht), sehr mühsam macht. Daher war die Veröffentlichung des FeynArts-
Model-Files für das MSSM 2001 [11] ein wichtiger Schritt. Der aufwen-
digste Teil dabei war der Test möglichst aller Sektoren des Modells durch
Reproduktion diverser Ergebnisse aus der Literatur, um auch im MSSM die
gleiche Zuverlässigkeit wie im Standardmodell zu gewährleisten.

Experimentell wurden noch keine Superpartner-Teilchen nachgewiesen.
Gerade aus diesem Grund ist aber die Betrachtung der MSSM-Schleifenkor-
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rekturen zu bekannten Prozessen besonders wichtig, da über diese die Effekte
der neuen Teilchen in Präsizionsobservablen eingehen und so Einschränkun-
gen an die Parameter des MSSM abgeleitet oder sogar indirekte Hinweise auf
Superpartner gefunden werden können.
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A. Arnold, B.A. Mann, H.J. Limbach, C. Holm
Max-Planck-Institut für Polymerforschung, Mainz

Abstract

We describe a newly written program package, ESPResSo, that was designed to perform nu-
merical MD/MC simulations for a broad class of soft matter systems in a parallel computing
environment, and we present a few examples of ongoing research projects using ESPResSo.
Our main concept in developing ESPResSo was to provide an easy to use simulation tool
which serves at the same time as a research platform capable of rapidly incorporating the latest
algorithmic developments in the field of soft matter sciences. The strength of the present ver-
sion lies in its efficient treatment of long range interactions in various geometries in a parallel
computing environment. The source code relies on simple ANSI-C, is Tcl-script driven, and
possesses easily modifiable interfaces, for example for real-time visualizations, or a graphical
interface. The distribution of the source code adheres to the open source standards. In this way
we hope to make our own scientific achievements more rapidly available to a broader research
community and, vice versa, also stimulate in this way researchers all over the world to contribute
to our project.

1 Introduction

Soft condensed matter (or soft matter, as it is often called) is a term for ma-
terials in states of matter that are neither simple liquids nor hard solids of the
type studied, for example, in solid state physics. Many such materials are
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familiar from everyday life - glues, paints, soaps, baby diapers - while others
are important in industrial processes, such as polymer melts that are molded
and extruded to form plastics [1]. Biological materials are mainly made out
of soft matter as well - membranes, actin filaments, DNA, RNA, and pro-
teins belong to this class. Furthermore, most of the food we digest is soft
matter. All these materials share the importance of length scales intermediate
between atomic and macroscopic scales: The relevant range for soft matter
lies between nanometers and micrometers. Examples are polymers, colloids,
liquid crystals, glasses, and dipolar fluids. Typical energies between differ-
ent structures are similar to thermal energies. Hence, Brownian motion or
thermal fluctuations play a prominent role. Another key feature of soft mat-
ter systems is their propensity to self-assemble. Again the energy differences
during this process are small such that many neighboring states are normally
accessible through fluctuations. This often results in complex phase behav-
iors yielding a rich variety of accessible structures. Order does not necessarily
arise on the single molecule level, but quite commonly exhibits a multitude
of hierarchically ordered structures of sometimes tremendous intricacy and
complexity. Most of the biological systems are usually not even in equilib-
rium but evolve among switchable steady states.

Given this wide field, research on soft material substances often acquires
knowledge from different areas of research, such as physics, chemistry, and
biology, such that a high level of interdisciplinarity may be required for cer-
tain scientific questions.

In the past, our research has mainly focused on the study of charged poly-
mers (polyelectrolytes) and charged colloids which serve as important sub-
stances for many technical applications. Charged systems also occur in bio-
logical environments (since most biological matter is charged), and modelling
explicit water molecules requires partial charges as well. The simulation of
these systems is not straightforward and very time consuming [2], thus the
production of single data points could take weeks or even months for complex
biomolecular problems. We have therefore developed a number of algorithms
which yield fast expressions for the energy and forces of fully or partially pe-
riodic systems [3, 4, 5]. As these algorithms are normally quite complex,
studying new problems in soft matter electrostatics commonly meant having
to adapt that code into new programs. This required considerable amounts
of valuable research time on coding issues with the final result of a highly
specialized research tool. In this way, human resources were kept away from
algorithmic improvements and scientific applications using them.

Looking at other available simulation packages, e.g BALL [6], GISMOS [7],
GROMOS [8], LAMMPS [9], NAMD [10], polyMD [11], and OCTA [12], we
did not find a single package which met all our needs. It should be easy
to use, but scientificly sound; it should grant experts access to state-of-the-
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Fig. 1: A typical research problem and the part where ESPResSo comes into play.

art techniques, but enable beginners to become experts as well, not being
limited to using a “black box”, therefore it should be well-documented pro-
viding exhaustive informations. All these are as indispensable for successful
scientific work as knowledge of how to specify a simulation problem and
how to interpret its results, knowledge no program can ever compensate for.
This led us to design a newly structured program for research on soft mat-
ter, which we called an Extensible Simulation Package for Research on Soft
Matter Systems, ESPResSo for short. The program enables us to study
soft matter model systems via Molecular dynamics (MD) and Monte Carlo
(MC) algorithms, with particular emphasis on extensibility for new, highly
complex force/energy algorithms. Since the problems under investigation
are located along scientific frontiers, meaning they are complex and com-
putationally time-consuming, the program is parallizable, fast, accurate, and
easily modifiable. Here, we present the first version of this ESPResSo-
package. Updates and more documentation can be found on the web page
http://www.espresso.mpg.de/. The distribution of the source code adheres
to the open source standards and can be requested from the authors. By this
we hope to ignite the further development of our code into a valuable research
tool for the soft matter community.

2 Design

The ESPResSo design was developed to specifically serve the demands of
a computational research group whose typical scientific projects can usually
be structured into several stages such as those depicted in Fig. 1.

While most simulation programs focus only on single aspects of such a
project, ESPResSo is suited to help researchers in the whole process be-
tween the specification of a scientific problem and the interpretation of the
results. Since ESPResSo offers a variety of methods and combines the
knowledge of tens of man-years of research expertise on soft matter it helps
newcomers to get into simulation techniques and to choose the right method
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for a certain problem. On the other hand experts can easily implement their
own special routines into the framework of ESPResSo, enabling them to
explore paths outside the scope of their own programs. Often new problems
require new algorithmic solutions. ESPResSo helps the user implement new
features due to its hierarchical structure, its modularity, its general data struc-
tures and its well-defined interfaces. A test-suite which is part of ESPResSo
helps in checking if new features reproduce well-known physical properties
of model systems. The hierarchical structure is well-suited for running sim-
ulations without required knowledge of the whole program package. The
whole system setup is contained within a Tcl [13] script. A large number of
sample scripts for various simulation problems help in developing new ap-
plications. Inside a simulation script, one can handle the entire simulation
process from the specification of a system, the actual simulation, its analysis
and the graphical output of the results. We want to emphasize our goal to
design a practical research tool which is easy to learn, use and extend. This is
especially supported by ESPResSo being a team project, since this ensures
that every part of the code has to pass through a discussion process provoking
a simple, effective and understandable implementation.

A difficult task in the design process arises from conflicts between different
requirements regarding the simultaneous optimization of several aspects. In
order to ensure that new researchers do not need too much time to learn how
ESPResSo works, the code has to be kept simple, which is sometimes in
contradiction to code optimization for computational speed. Aiming at being
able to handle a wide variety of topics instead of solving only specific prob-
lems leads to the same challenge of countering the code’s tendency towards
more complexity, hence less understandability.

HIERARCHICAL PROGRAM STRUCTURE: ESPResSo is built up using
three hierarchical program levels. In Fig. 2, we show a sketch of this hier-
archical program structure together with the program modules belonging to
each level and their scope. The steering of the program is done on a script
language level. All tasks are implemented as extensions to the script lan-
guage dealing with input and output of data, setting of particle properties,
interactions and parameters, and performing the integration and analysis of a
given system. The basic simulation level is implemented in C. It contains the
integrator as well as the calculation of fundamental observables like forces,
torques, energies, pressure and temperature. These first two levels build up
the part that is common to all investigated problems. Consequently, it is the
part which should be known by a researcher using ESPResSo. Therefore,
special emphasis was placed on simplicity and readability. The third level,
also implemented in C, ensures the speed, efficiency and great generality of
ESPResSo. This includes algorithms to accelerate the force and energy
calculations used by the integrator as well as special algorithms to treat long-
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range interactions (see Section 3.3). Parallelization of all time-critical parts
of the program enable efficient large scale simulations (see the benchmarks
in Section 3.4). On this level, one also finds all implemented potentials for
the particle interactions, and interfaces to other programs like VMD [14] for
on-the-fly visualization of simulations.

Simulation
Level

Special Task
Level

Module ContentLevel

Script Level

Molecular Dynamics
Forces
Thermostat

Monte Carlo
Energy

Pressure

Communication

Linked cell
Verlet lists
Ghost particles

P3M
MMM1D/2D

Tcl commands for

Integration by Newton’s equation F=ma
Calculation of the forces from all interactions
Temperature control for constant temperature MD
Integration using Boltzmann−Factors
Calculation of the energies from all interactions
Pressure is needed for e. g. constant pressure simulaions

defining interactions
setting simulation parameters
integration
analysis, measuring observables

setting particle properties
structured file I/Oblockfile

part
inter
setmd
integrate
analyze

Data exchange in parallel runs outside integration

sorting particles spatially
short−ranged interactions calculation
data exchange in parallel integrations

Algorithms for

L.−J., Debye−Hückel
FENE, bond−angle

short−ranged interacions
bonded interactions

Potentials for electrostatics in partially periodic b.c.
electrostatic in periodic b.c. using FFT

IMD Realtime visualization using VMD

Fig. 2: Program hierarchy and modular structure of ESPResSo.

MODULARITY: The hierarchical structure is accomplished by splitting the
levels into different modules, which subdivides the otherwise large program
package into manageable pieces. This is particularly important for the aspect
of extensibility because it ensures that an extension does not affect the entire
package but rather one or few modules. It also allows the user to concen-
trate on understanding those modules and their scientific background that are
actually used for the particular problem under investigation.

GENERALITY: To serve as a general research tool, ESPResSo needs to
be able to handle a wide variety of problems. This includes different topolo-
gies, short- and long-range interactions, external fields, constraints, different
boundary conditions, and various methods like MD or MC. In order to treat
large scale simulations, it is also necessary to have an efficient parallelized
code which runs on multiple CPU architectures. Since one of the main fo-
cuses of ESPResSo is long range interactions, we describe the implemented
methods in more detail in Section 3, while abilities of the parallelization is
demonstrated in 3.4.
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The connectivity between the particles, which in other programs is of-
ten stored as a global topology, is incorporated locally at every particle. In
this way the user is free specifying the needed topologies on the script level

Fig. 3: Snapshot of a fullerene molecule (C60) built
by ESPResSo.

(see Section 4 for examples),
and the connectivity informa-
tion can easily be parallelized.
Since this allows for any kind
of topology, additional con-
cepts such as molecules, poly-
mer chains or proteins are un-
necessary. There are however
a number of predefined sam-
ple scripts and auxiliary rou-
tines provided for the user’s
convenience which set up poly-
mer chains, simple model net-
works, or more complex struc-
tures such as fullerenes (see
Fig. 3), representing tutorial-
like shortcuts that facilitate writ-
ing new task scripts. Since both

single molecule experiments as well as investigations of confined systems
have gained increasing importance over the last years, ESPResSo also con-
tains features to handle corresponding simulations. The program is able to
deal with periodic boundary conditions in any combination of up to three
spatial directions.

When simulating bulk systems, e.g. a small representative portion of a
solution, normally periodic boundary conditions are applied to avoid bound-
ary effects. For simulations of thin films or surface effects, periodic bound-
ary conditions in all three spatial dimensions do no make sense. The proper
boundary conditions are periodic only in two out of the three spatial dimen-
sions, while the remaining coordinate has a non priodic boundary condition.
If rods are the object of interest (see e.g. Section 4.3), only one coordinate is
left to have periodic boundary conditions. The complexity of an electrostatic
simulation dramatically changes with different boundary conditions (see Sec-
tion 3.3).

In the case of a thin film, the particles have to be confined to a fixed layer.
For this ESPResSo supports constraints like walls, cylinders or spheres. It
is also possible to simulate particles subject to external forces or fields. In
order to cover a wide range of thermodynamic environments one can switch
between simulating different thermodynamic ensembles like the NVE-, NVT-
or NPT-ensemble.
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DOCUMENTATION: ESPResSo is not intended to be a black-box-like
package. Users are encouraged to try to understand its algorithms and rou-
tines, developers are strongly advised to do so before extending it. In or-
der to preserve the knowledge about algorithms and their physical/chemical
background, it is important to provide and maintain a well structured docu-
mentation. This is mainly done inside the code itself and then extracted and
processed by doc++ [15] into a user-friendly html-manual mainly adress-
ing specific code-/function-/procedure-related issues. It is supplemented by a
stand-alone documentation on general topics such as the usage of the script
commands, the general organization of the data structures, communication
schemes, and analysis options. The code development itself is done in a CVS-
environment (concurrent version system [16]). This helps to keep track of all
changes, and provides information on what, when and by whom something
has changed in the program.

PROGRAMMING ENVIRONMENT: We decided to use C as the only pro-
gramming language in order to keep the code as simple to read as possible.
Compared to C++ we think that this is still the language of choice in a re-
search environment since it is easier to learn for people having a natural sci-
ence rather than a computer science background. At the same time it provides
all necessary features to create a modular and concise program package.

We use Tcl [13] as the script language since it contains a simple and effec-
tive interface to build C programs as extensions to the script language itself.
Syntax and programming style are similar to C which makes it easy to learn.
Another advantage is that there exist a large variety of extensions for Tcl.
For example, with the Tk-extension it is straight forward to build a graphical
user interface. This has already been done for presentation purposes. Tcl also
gives us the possibility to easily create interfaces to other programs. Exam-
ples are gnuplot or xmgr for graphical processing of analysis results.

Another important choice was the type of communication for the paral-
lelization. We decided on using MPI, as it is available for virtually all archi-
tectures; unlike e.g. OpenMP which requires shared memory, MPI also works
on distributed memory computers such as Linux clusters. ESPResSo re-
lies on the fact that MPI–implementations are normally well optimized for the
underlying architecture.

EASE OF USE: For the ESPResSo-package to live up to its full potential,
a straightforward and simple access is mandatory. The layered hierarchi-
cal program structure allows the user to focus on any aspect of his scientific
simulation. This can be for example modeling complex physical systems
with particle insertion/deletion, pressure-dependent volume changes and/or
varying constraints can be done by simply creating a corresponding script
file which specifies the basic rules of such a setup. Or it can be tweaking
computational routines to utmost performance can be achieved by simply
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adding/modifying/replacing one single module of ESPResSo, immediately
granting other users access to that improvement.

To demonstrate this simplicity, we give the complete script file required for
the real simulation of a full 3D liquid Lennard-Jones system near the triple
point with ESPResSo – just the following few lines:
# Sample Script:
# Lennard-Jones system near the triple point
# Create 32000 random particles at a density
# of 0.8442 in a cubic box.
setmd box_l 33.5919 33.5919 33.5919
for {set i 0} { $i < 32000 } {incr i} {

set position_x [expr 33.5919*[t_random]]
set position_y [expr 33.5919*[t_random]]
set position_z [expr 33.5919*[t_random]]
part $i position $position_x $position_y \

$position_z type 0
}

# Create Lennard-Jones-interactions
inter 0 0 lennard-jones 1.0 1.0 2.5 0 0

# Initializing a Langevin thermostat
setmd temperature 0.72
setmd gamma 1.0

# Integrate 1000 steps in a NVT-ensemble
setmd time_step 0.01
integrate 1000

This script, complemented by an initial warm-up period to prevent two of the
LJ-particles to have their random starting positions too close to one another, is
essentially the one which was used in Section 3.4 for creating the equilibrated
starting configuration of the first benchmark scenario.

3 Included Algorithms

In the following we want to give a brief overview on the algorithms and data
organization used in ESPResSo. The handling of the electrostatic interac-
tion, one of the special features of our program, is described in more detail.

3.1 Data structure and link cells

The calculation of pairwise forces requires a loop over all possible particle
pairs, which is computationally inefficient (scaling as O(N2), where N =
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amount of particles). In the case of short-ranged forces, i.e. forces which
only have a non-neglegible contribution within a range of less than 10% of
the simulation box, a standard way to overcome this is the link cell algorithm.
The particles are sorted into cells which are about as large as the largest range
of a short–ranged interaction. Then short–ranged interactions only occur be-
tween particles in adjacent cells. For systems of equal density the number
of particles in these cells is constant, therefore reducing the computational
order to O(N). Distributing the particles according to their spatial position,
known as domain decomposition, is also a standard method for parallelization
in multiprocessor environments. Therefore, our way of storing the data also
supports the parallelization of the code.

Standard MD/MC programs store the particle information consecutively
and the cell information as a pointer array into the particle data. This re-
sults in less readable code since many indirect accesses to the particles oc-
cur. Therefore we decided to store the particle information split up into the
cells, resulting in a much more elegant integrator code. A nice side effect is
that the particle information is now also stored in the same order as it will be
used during the simulation which linearizes memory accesses. Since memory
bandwidth is the bottle neck on modern computer systems, this also results in
a major speedup.

3.2 MD integrator

For MD simulations ESPResSo has a velocity Verlet integrator with a Lan-
gevin thermostat. The calculation of the short–ranged forces is done using
the link cell structure and Verlet lists. For each pair of neighboring cells,
ESPResSo maintains the Verlet list, that is a list of all the particle pairs
which currently interact and pairs that will interact if they approach “just a
bit” further. ESPResSo has to calculate only the interactions for these pairs
as long as none of them have moved too far, which may take more than ten
time steps. Bonded interactions such as spring forces are stored with one of
the particles involved and calculated in a simple loop. Long–ranged inter-
actions like the electrostatic potential need a much more sophisticated treat-
ment, which is explained below. Particles that are not rotationally invariant
are treated using a quaternion representation.

3.3 Electrostatics –
P3M, MMM2D, ELC and MMM1D

The most time consuming part of a simulation incorporating charged parti-
cles is the calculation of the electrostatic interaction. This is due to the fact
that the electrostatic interaction is long–ranged, so that interactions are neg-
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ligible only in a range larger than several box lengths in general. In periodic
boundary conditions on reasonably sized systems this problem is therefore
only tractable by applying non–trivial mathematics. The first algorithm to
treat this problem efficiently goes back to Ewald in 1921, whose algorithm
had an order of O(N3/2) and is still in use today. The potential is artifi-
cially split up into a short–ranged part and a long–ranged, smooth part, which
is handled in Fourier space. ESPResSo uses an extension of this method
called P3M1 [17]. This method uses a grid approximation for the particle
distribution in the Fourier space part, allowing the use of fast fourier trans-
formations (FFT) which facilitates the overall computational time to drop to
O(N log N). ESPResSo uses FFTW which is a fast and portable public do-
main FFT [18]. The overall performance of all Ewald-type methods critically
depends on the choice for the splitting point of the potential. As P3M fea-
tures additional parameters such as the grid size, choosing the optimal ones
is even more demanding. ESPResSo helps the user by providing an auto-
matic tuning tool which determines the optimal P3M parameter set [3] for a
given system and a certain desired accuracy, e.g. 10−4: inter coulomb
<bjerrum_length> p3m tune accuracy 1e-4

If the system is replicated periodically in fewer than three dimensions, the
situation is even worse due to the broken symmetry. Here, the classical Ewald
approach leads to an O(N2) algorithm. ESPResSo here uses variants of the
MMM [19] approach, MMM2D [4] and MMM1D [20], to tackle the 2D and
1D periodic cases for small numbers of particles. For large numbers of par-
ticles in two–dimensionally replicated systems, another method, called ELC2

[5], is implemented that allows a computational effort similar to P3M. These
methods are current developments and ESPResSo is the first simulation tool
to use them. In the following we shortly describe the algorithms and their
range of application.

MMM2D, obtains high accuracy and is very fast for small number of par-
ticles, but has a computational order of O(N5/3) and therefore is for larger
numbers of particles much slower than P3M. It allows for very simple error
estimates and is easy to tune for optimal speed. MMM2D uses two differ-
ent formulas to calculate the electrostatic interaction. The first one converges
very fast, but only if the particles are sufficiently far away. The second for-
mula also works for particles close together, but is much more time consum-
ing. The only tuneable parameter is the distance at which the use of the two
formulas is switched.

ELC is a completely different approach. The interaction is first calculated
using P3M with full periodic boundary conditions, but in a second step the

1P3M: Particle-particle particle-mesh method
2ELC: Electrostatic layer correction
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contribution of the additional image layers is subtracted again. To calculate
this contribution parts of the MMM2D theory can be used, leading to a very
fast linear algorithm for this calculation. The overall computational time is
dominated by the P3M algorithm.

For the one–dimensional case MMM2D is easily modified to the MMM1D
algorithm. It has a very unfavorable computational time scaling of O(N2),
but still is as accurate as MMM2D, and for small numbers of particles very
fast. An application of this algorithm is described in Section 4.3.

3.4 Benchmarks

Even though the primary goals of the ESPResSo-package are accessibility,
modularity, flexibility, and extensibility, its secondary -and equally important-
objective accounts for the scientific realities of tight schedules and time con-
straints: Being as optimized for speed as possible without sacrificing its
primary benefits. Considering the timings we measured, the state-of-the-
art algorithms adapted (see previous sections) meet both demands extremely
well. The direct comparison of benchmark timings of some test scenarios
to those of the corresponding highly specialized codes show that despite the
unique nature of ESPResSo representing a very general multi-purpose tool,
it still performs similarly (e.g. compared to LAMMPS, but around 1.5 times
slower than polyMD) with a firm robustness among different architectures
(e.g. AMD, Intel, IBM, Alpha), compilers (e.g. mpicci, mpich, mpicc), and
operating systems (e.g. AIX, OSF1, Linux). Since to our knowledge there
is no available program package similar in scope and design of ESPResSo,
it is therefore safe to conclude that balancing both aforementioned goals has
succeeded. Any potential difference in performance is negligible compared
to either the time scales needed for algorithmical implementation of even
faster code (particularly when recalling ESPResSo’s mission to remain un-
derstandable, prohibiting most low-level trickery), or to the advancements
in hardware technology, or simply overcompensated for by ESPResSo’s
design-inherent advantages since e.g. the modularity allows to account for
any algorithmical improvements which might arise in the future.

Besides absolute speed, another fundamental feature of our scientific simu-
lation system is its intrinsic parallelizability, which also distinguishes it from
other projects: In ESPResSo the choices of data structures and algorithm
implementations were optimized in this respect, so that the program is now
able to use any reasonable number of processors on any computer system
supporting one of the available MPI–environments. To demonstrate the par-
allel performance, Table 1 presents benchmarking results for three standard
test scenarios. Note that the charged systems used the P3M routines, which is
why for N = 4 the scaled dense ES-system seems more efficient compared
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to the scaled case at N = 2 or to the fixed system because the performance
critically depends on the choice of P3M-parameters whose optimizability in
turn depends on the number of particles and processors (see Section 3.3).

4 Applications

In this section, we will present a few ongoing research projects dealing with
charged polymers and their counterions in different solvents and topologies;
extensions to charged membranes and colloids are straightforward, as are
those to neutral systems. Polyelectrolytes are polymers which have the abil-
ity to dissociate charges in polar solvents which results in charged polymer
chains (macroions) and mobile counterions. They represent a broad and in-
teresting class of soft matter [21, 22] that command increasing attention in
the scientific community. In technical applications polyelectrolytes are used
as viscosity modifiers, precipitating agents, and superabsorbers. A thorough
understanding of charged soft matter has also become of great interest in bio-
chemistry and molecular biology.

4.1 Polyelectrolyte bundles

Polyelectrolyte bundles can be used as templates to build up nanowires or
model systems to study DNA agglomerates. Although applications are al-
ready in an advanced state, our understanding of the polyelectrolyte bundling
processes is still quite limited. With the help of molecular dynamics simu-

# of Processors N 1 2 4 8 16 32
LJ-system (fixed) 1.00 0.99 0.97 0.96 0.92 0.84
LJ-system (scaled) 1.00 0.99 0.97 0.92 0.89 0.82
dense ES (fixed) 1.00 0.97 0.95 0.88 0.81 0.69
dense ES (scaled) 1.00 0.96 0.99 0.76 0.74 0.50
dilute ES (fixed) 1.00 0.87 0.83 0.73 0.60 0.46
dilute ES (scaled) 1.00 0.86 0.68 0.66 0.61 0.35

Tab. 1: Efficiency of the ESPResSo-code on an IBM Regatta H Server (eServer 690 Modell
681 with 32 Power4 Processors at 1.3 GHz each ) for three different systems: A neutral LJ fluid
composed of either 32000 · N (scaled) or 32000 particles (fixed) at a density of 0.8442 in a
NVE-ensemble; a dense electrolyte system with either 2000 ·N (scaled) or 8000 particles (fixed)
at a density of 0.07, friction and temperature of 1.0, Bjerrum length of 20.0 in a NVT-ensemble;
a dilute electrolyte system which differs only in density (1 · 10−4), Bjerrum length (2.0), and
fixed size (16000 particles). After warm-up and equilibration period the execution time TN for
integrating 1000 time steps (integrate 1000) was measured and compared between using

one and N nodes: For a fixed-size system the efficiency reads T1/N
TN

, for scaled-size T1
TN

.
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lations, we investigate the stability of such bundles as a function of (i) the
strength of the electrostatic interaction, (ii) the stiffness of the polyelectrolyte
backbone, (iii) the solvent quality, and (iv) the chain length. Simulations
are performed in a spherical simulation cell. This is possible in ESPResSo
using non-periodic boundary conditions together with a spherical constraint.
The concept to store the connectivity between the particles locally at each
atom enables us to easily create the needed topology of the chains, namely
a stiff backbone chain with a flexible hair attached at every third monomer.
In Fig. 4, a snapshot of a polyelectrolyte bundle is shown. The simulation
started as a bundle made of 8 polyelectrolyte chains. During the simulation,
two of the chains split off the bundle and a bundle with 6 chains remains. This
shows that we can in fact explain a thermodynamically limited finite bundle
size with a relatively simple model.

4.2 Hydrogels - Polyelectrolyte Networks

Probably one of the most computationally demanding tasks on the coarse-
grained level of bead-spring polymers is the simulation of a network of poly-
electrolytes. Not only do the aforementioned long-range interactions between
charged monomer units require sophisticated techniques, the cross-linked net-
work bonds themselves heavily increase the amount of short-ranged excluded
volume and bonding potentials to be considered while at the same time dimin-
ishing the effectiveness of cut-offs for saving computation time. Nevertheless,
the wide applicability of such hydrogels for chemical, pharmaceutical, medi-
cal, biological, agricultural, environmental, and industrial settings more than
justifies any efforts towards a deeper understanding of their fascinating and
important properties.

With the ESPResSo package one can go easily from single chains to a
network on the script level. A simple

Fig. 4: Snapshot of a polyelec-
trolyte bundle: A bundle at the
edge of stability. One chain has al-
ready fallen off and another chain
is splitting from the bundle. Colors:
neutral backbone - red, charged
backbone - blue, hydrophobic side
chains - orange, counterions - gray
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for {set i 0} {$i < $number_of_chains} {
part $start($i) bond $fene $partner1($i)
part $end($i) bond $fene $partner2($i)

}

in the Tcl-script is enough to crosslink a system of charged chains to become
a hydrogel, while the remaining segments of script and code do not need to
be changed at all.

Naturally, the behavior of such systems depends both on the environment,
i.e. the strengths of electrostatic and bonding interactions as well as the pres-
ence and valency of eventual salt molecules, and on the topology of the net-
work which may range from a well-ordered model network (diamond, star
polymer) to randomly crosslinked polyelectrolytes.

Using ESPResSo, we find that the swelling behavior of polyelectrolyte
gels does not only beat comparable neutral networks by at least an order of
magnitude, showing unprecedented abilities of absorbing the surrounding sol-
vent by growing several times its own volume, but it also turned out that a
simple scaling argument seemed to be sufficient to describe these complex
interplays between (partially screened) long-range interactions, short-range
attraction and excluded volume effects by balancing the osmotic pressure of
the counterions inside the gel due to electrostatic repulsion and the elastic
contribution of the stretched chains [23, 24].

4.3 Stiff DNA–like polymers

Experiments have shown that DNA exhibits attractive interactions in the pres-
ence of multivalent counterions. This is believed to be the reason for the
compactification of DNA, for example inside viral capsids. Computer sim-
ulations of polyelectrolytes in the presence of multivalent counterions also
show an attractive force between the (like–charged) polymers.

To understand the effects in more detail, we model the DNA strands by two
infinitely long charged rods. The system is neutralized by multivalent coun-
terions. In such a system, mean field theories like Poisson–Boltzmann do
not predict any attraction of the rods. Generally, one knows that correlations
between the counterions, ignored in the mean–field treatment, are responsi-
ble for the observed rod–rod attractions. We use ESPResSo to study this
system, using periodic boundary conditions only along the rods. The electro-
static interaction is calculated using MMM1D.

A first goal was to extend some results from previous simulations [25],
which studied the effect of the electrostatic interaction by increasing the Bjer-
rum length3. The study showed that even for moderate Bjerrum lengths the
behavior is dominated by the low temperature behavior, but depends heavily

3The Bjerrum length is the distance at which two charges interact with an energy of 1kBT
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on other parameters like the rod radius and its line charge density. If one
splits up the net force on the rods into the contributions from the electrostatic
interaction and from the excluded volume interaction, it was found that both
forces can be repulsive or attractive at large Bjerrum lengths, depending on
the other parameters. We performed a number of simulations at T = 0 vary-
ing both rod radius and line charge density, showing an unexpectedly rich
phase diagram (Fig. 5).

System 1:

rrod = 1σ,

λ = 0.33/σ

System 2:

rrod = 4σ,

λ = 6.5/σ

Fig. 5: At zero temperature, the ions form a crystal. For System 1 all counterions are trapped in
the plane spanned by the rods, for System 2 a quasi hexagonal pattern is formed. The systems
have different rod radii rrod and line charge densities λ. Especially for System 1 the patterns
show defects which are due to finite size effects and the kinetics of the freezing process.

Recent analytical predictions based on a strong coupling theory regarding
the equilibrium distance between two charged rods were easily verified due
to the flexibility of ESPResSo [26]. This distance was determined using a
simple bisection algorithm combined with an interpolation, something which
is easily implemented in Tcl and could therefore be done in the simulation
script, while most other simulation packages would not have allowed such a
simulation directly.

5 Further developments

As of this writing the ESPResSo-package continues to undergo significant
enlargement. We are currently implementing a standard dipolar Ewald sum
[27], which will enhance the capabilities to simulate ferrofluids or dipolar
fluids like simple water models, and add an enhanced leap-frog algorithm
for the rotational degrees of freedom. Also work has started to include an
anisotropic short range potential, namely the Gay-Berne potential, which will
allow the study of liquid crystals.
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For the dynamics of soft matter systems it is often necessary to include hydro-
dynamic interactions. Since in practice one cannot include all molecular de-
tails of the systems this can be achieved on a coarse grained level by coupling
the solvent degrees of freedom to the simulated particles. This will be imple-
mented via an advanced lattice Boltzmann algorithm that has already proven
its usefulness in polymer dynamics simulations [28]. An alternative way of
coarse graining hydrodynamics, called dissipative particle dynamics (DPD)
[29], is based on a momentum conserving thermostat. We will implement a
version according to Soddemann et al. [30]. And finally, a non-equilibrium
molecular dynamics algorithm [31], especially useful for driven systems, will
also be added.

On top of the present strengths of ESPResSo concerning the efficient
treatment of electrostatics, we plan to implement two very new ideas which
promise to be a significant improvement in investigating media with varying
local dielectric constants: While the first is a purely local algorithm by T.
Maggs [32] which seems to be very well suited for MC simulations and can
also be very useful for dense systems by using a constrained MD algorithm4,
the second is a finite difference multigrid scheme for electro- and magneto-
statics5 which appears to be better for parallel applications, promising to be
fast for MD algorithms as well due to its recursiveness.

There are many more improvements planned for the next year, and hope-
fully the capabilities of ESPResSo will grow even further once other re-
searchers take up our idea and contribute to ESPResSo by using, customiz-
ing and extending it.
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Detonation Simulation with the AMROC Framework

Ralf Deiterding
California Institute of Technology, Pasadena

Abstract

Numerical simulations can be the key to the thorough understanding of the multi-dimensional
nature of transient detonation waves. But the accurate approximation of realistic detonations is
extremely demanding, because a wide range of different scales need to be resolved. This paper
describes an efficient simulation strategy based on a generic implementation of a blockstructured
dynamically adaptive mesh refinement technique for distributed memory machines. Highly re-
solved detonation structure computations with detailed hydrogen-oxygen chemistry demonstrate
the effectiveness of the approach in practice.

1 Introduction

Reacting flows have been a topic of on-going research since more than hun-
dred years. The interaction between hydrodynamic flow and chemical kinet-
ics can be extremely complex and even today many phenomena are not very
well understood. One of these phenomena is the propagation of detonation
waves in gaseous media. While detonations propagate at supersonic veloc-
ities between 1000 and 2000 m/s, they inhibit non-neglectable instationary
sub-structures in the millimeter range. Experimental observations can provide
only limited insight and it is therefore not surprising that the understanding
of the multi-dimensionality has improved only little since the first systematic
investigations [9, 26]. An alternative to laboratory experiments are direct nu-
merical simulations of the governing thermo- and hydrodynamic equations.
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But the additional source terms modeling detailed non-equilibrium chemistry
are often stiff and introduce new and extremely small scales into the flow
field. Their accurate numerical representation requires finite volume meshes
with extraordinarily high local resolution.

In this paper, we summarize our successful efforts in simulating multi-
dimensional detonations with detailed and highly stiff chemical kinetics on
recent parallel machines with distributed memory, especially on clusters of
standard personal computers [7]. We explain the design of our public-domain
framework AMROC (Adaptive Mesh Refinement in Object-oriented C++) [8]
that implements the blockstructured mesh refinement approach after Berger
and Collela [2]. Briefly, we sketch the employed numerical methods and the
treatment of the reaction terms.

2 Detonation Theory

A detonation is a shock-induced combustion wave that internally consists of
a discontinuous hydrodynamic shock wave followed by a smooth region of
decaying combustion. The adiabatic compression due to the passage of the
shock rises the temperature of the combustible mixture above the ignition
limit. The reaction results in an energy release driving the shock wave for-
ward. In a self-sustaining detonation, shock and reaction zone propagate es-
sentially with an identical speed d

CJ
that is approximated to good accuracy by

the classical Chapman-Jouguet (CJ) theory, cf. [30]. But up to now, no theory
exists that describes the internal flow structure satisfactory. The Zel’dovich-
von Neumann-Döring (ZND) theory is widely believed to reproduce the one-
dimensional detonation structure correctly, but already early experiments [9]
uncovered that the reduction to one space dimension is not even justified in
long combustion devices. It was found that detonation waves usually exhibit
non-neglectable instationary multi-dimensional sub-structures and do not re-
main planar. The multi-dimensional instability manifests itself in instationary
shock waves propagating perpendicular to the detonation front. A complex
flow pattern is formed around each triple point, where the detonation front
is intersected by a transverse shock. Pressure and temperature are increased
remarkable in a triple point and the chemical reaction is enhanced drastically
giving rise to an enormous local energy release. Hence, the accurate repre-
sentation of triple points is essential for safety analysis, but also in technical
applications, e.g. in the pulse detonation engine. Some particular mixtures,
e.g. low-pressure hydrogen-oxygen with high argon diluent, are known to
produce very regular triple point movements. The triple point trajectories
form regular “fish-scale” patterns, so called detonation cells, with a charac-
teristic length L and width λ (compare left sketch of Fig. 1).
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Fig. 1: Left: regular detonation structure at three different time steps on triple point trajectories,
right: enlargement of a periodical triple point configuration. E: reflected shock, F: slip line, G:
diffusive extension of slip line with flow vertex.

Fig. 1 displays the hydrodynamic flow pattern of a detonation with regular
cellular structure as it is known since the early 1970s, cf. [26, 19]. The right
sketch shows the periodic wave configuration around a triple point in detail.
It consists of a Mach reflection, a flow pattern well-known from non-reactive
supersonic hydrodynamics [4]. The undisturbed detonation front is called the
incident shock, while the transverse wave takes the role of the reflected shock.
The triple point is driven forward by a strong shock wave, called Mach stem.
Mach stem and reflected shock enclose the slip line, the contact discontinuity.

The Mach stem is always much stronger than the incident shock, which
results in a considerable reduction of the induction length lig, the distance
between leading shock and measurable reaction. The shock front inside the
detonation cell travels as two Mach stems from point A to the line BC. In
the points B and C the triple point configuration is inverted nearly instan-
taneously and the front in the cell becomes the incident shock. Along the
symmetry line AD the change is smooth and the shock strength decreases
continuously. In D the two triple points merge exactly in a single point. The
incident shock vanishes completely and the slip line, which was necessary for
a stable triple point configuration between Mach stem and incident shock, is
torn off and remains behind. Two new triple points with two new slip lines
develop immediately after D.

3 Governing Equations

The appropriate model for detonation propagation in premixed gases with
realistic chemistry are the inviscid Euler equations for multiple thermally
perfect species with reactive source terms [12, 30]. These equations form
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a system of inhomogeneous hyperbolic conservation laws that reads

∂tρi + ∇ · (ρiu) = Wi ω̇i , i = 1, . . . , K ,
∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = 0 ,
∂t(ρE) + ∇ · ((ρE + p)u) = 0 .

(1)

Herein, ρi denotes the partial density of the ith species and ρ =
∑K

i=1 ρi is
the total density. The ratios Yi = ρi/ρ are called mass fractions. We denote
the velocity vector by u and E is the specific total energy. We assume that
all species are ideal gases in thermal equilibrium and the hydrostatic pressure
p is given as the sum of the partial pressures pi = RTρi/Wi with R de-
noting the universal gas constant and Wi the molecular weight, respectively.
The evaluation of the last equation requires the previous calculation of the
temperature T . As detailed chemical kinetics typically require species with
temperature-dependent material properties, each evaluation of T involves the
approximative solution of an implicit equation by Newton iteration [7].

The chemical production rate for each species is derived from a reaction
mechanism of J chemical reactions as

ω̇i =
J∑

j=1

(νr
ji−νf

ji)
[

kf
j

K∏

l=1

(
ρl

Wl

) νf
jl

−kr
j

K∏

l=1

(
ρl

Wl

) νr
jl

]

, i = 1, . . . , K ,

(2)
with ν

f/r
ji denoting the forward and backward stoichiometric coefficients of

the ith species in the jth reaction. The rate expressions k
f/r
j (T ) are calculated

by an Arrhenius law, cf. [30].

4 Numerical Methods

We use the time-operator splitting approach or method of fractional steps [15]
to decouple hydrodynamic transport and chemical reaction numerically. This
technique is most frequently used for time-dependent reactive flow compu-
tations. The homogeneous Euler equations and the usually stiff system of
ordinary differential equations

∂tρi = Wi ω̇i(ρ1, . . . , ρK , T ) , i = 1, . . . , K (3)

are integrated successively with the data from the preceding step as initial
condition. The advantage of this approach is that a globally coupled implicit
problem is avoided and a time-implicit discretization, which accounts for the
stiffness of the reaction terms, needs to be applied only local in each finite
volume cell. We use a semi-implicit Rosenbrock-Wanner method [16] to in-
tegrate Eq. (3) within each cell. Temperature-dependent material properties
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Fig. 2: A self-sustaining hydrogen-oxygen detonation (dCJ ≈ 1627 m/s, lig ≈ 1.404mm)
calculated with the ZND theory and representation of two mass fraction distributions on grids
with different mesh widths (right). The dots represent the values in the center of a finite volume.
The abscissas display the distance behind the detonation front in mm.

are derived from look-up tables that are constructed during start-up of the
computational code. The expensive reaction rate expressions (2) are evalu-
ated by a mechanism-specific Fortran-77 function, which is produced by a
source code generator on top of the Chemkin-II library [17] in advance. The
code generator implements the reaction rate formulas without any loops and
inserts constants like ν

f/r
ji directly into the code.

As detonations involve supersonic shock waves we use a finite volume
discretization that achieves a proper upwinding in all characteristic fields.
The scheme utilizes a quasi-one-dimensional approximate Riemann solver of
Roe-type [14] and is extended to multiple space-dimensions via the method of
fractional steps, cf. [27]. To circumvent the intrinsic problem of unphysical
total densities and internal energies near vacuum due to the Roe linearization,
cf. [11], the scheme has the possibility to switch to the simple, but extremely
robust Harten-Lax-Van Leer (HLL) Riemann solver. Negative mass fraction
values are avoided by a numerical flux modification proposed by Larrouturou
[18]. Finally, the occurrence of the disastrous carbuncle phenomena, a multi-
dimensional numerical crossflow instability that destroys every simulation of
strong grid-aligned shocks or detonation waves completely [23], is prevented
by introducing a small amount of additional numerical viscosity in a multi-
dimensional way [25]. A detailed derivation of the entire Roe-HLL scheme
including all necessary modifications can be found in [7]. This hybrid Rie-
mann solver is extended to a second-order accurate method with the MUSCL-
Hancock variable extrapolation technique by Van Leer [27].

4.1 Meshes for Detonation Simulation

Numerical simulations of detonation waves require computational meshes,
which are able to represent the strong local flow changes due to the reaction
correctly. In particular, the shock of a detonation wave with detailed kinet-
ics can be very sensitive to changes of the reaction behind, and if the mesh
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is too coarse to resolve all reaction details correctly, the Riemann Problem
at the detonation front is changed remarkably leading to a wrong speed of
propagation. We make a simple discretization test in order to illustrate, how
fine computational meshes for accurate detonation simulations in fact have
to be. The two left graphs of Fig. 2 display the exact distributions of YH2O

and YH2O2 according to the ZND detonation model for the frequently stud-
ied H2 : O2 : Ar Chapman-Jouguet detonation with molar ratios 2 : 1 : 7
at T0 = 298 K and p0 = 6.67 kPa discretized with different grids.1 Appar-
ently, a resolution of 4 finite volumes per induction length (4 Pts/lig with
lig = 1.404 mm) is not sufficient to capture the maximum of the interme-
diate product H2O2 correctly. This requires at least 5 to 6 Pts/lig, but in
triple points even finer resolutions can be expected. As discretizations of typ-
ical combustors with such fine uniform meshes typically would require up to
109 points in the two- and up to 1012 points in the three-dimensional case
the application of a dynamically adaptive mesh refinement technique is indis-
pensable.

5 An Adaptive Mesh Refinement Framework

In order to supply the required temporal and spatial resolution efficiently, we
employ the blockstructured adaptive mesh refinement (AMR) method after
Berger and Colella [2], which is tailored especially for hyperbolic conserva-
tion laws on logically rectangular finite volume grids. We have implemented
the AMR method in a generic, dimension-independent object-oriented frame-
work in C++. It is called AMROC (Adaptive Mesh Refinement in Object-
oriented C++) and is free of charge for scientific use [8]. An efficient paral-
lelization strategy for distributed memory machines has been found and the
codes can be executed on all systems that provide the MPI library.

5.1 Berger-Collela AMR Method

Instead of replacing single cells by finer ones, as it is done in cell-oriented re-
finement techniques, the Berger-Collela AMR method follows a patch-orien-
ted approach. Cells being flagged by various error indicators (shaded in Fig.
3) are clustered with a special algorithm [1] into non-overlapping rectangu-
lar grids. Refinement grids are derived recursively from coarser ones and a
hierarchy of successively embedded levels is thereby constructed, cf. Fig.
3. All mesh widths on level l are rl-times finer than on level l − 1, i.e.

1Throughout this paper, only one hydrogen-oxygen reaction mechanism extracted from a
larger hydrocarbon mechanism assembled by Westbrook has been employed [28]. The mecha-
nism uses 34 elementary reactions for the 9 species H, O, OH, H2, O2, H2O, HO2, H2O2 and
Ar.
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Fig. 3: The AMR method creates a hierarchy of rectangular subgrids.

∆tl := ∆tl−1/rl and ∆xn,l := ∆xn,l−1/rl with rl ≥ 2 for l > 0 and
r0 = 1, and a time-explicit finite volume scheme (in principle) remains sta-
ble on all levels of the hierarchy. The recursive integration order visualized
in the left sketch of Fig. 4 is an important difference to usual unstructured
adaptive strategies and is one of the main reasons for the high efficiency of
the approach.

The numerical scheme is applied on level l by calling a single-grid routine
in a loop over all subgrids. The subgrids are computationally decoupled by
employing ghost or halo cell values. Three types of different ghost cells have
to be considered in the sequential case, see right sketch of Fig. 4. Cells out-
side of the root domain are used to implement physical boundary conditions.
Ghost cells overlaid by a grid on level l have a unique interior cell analogue
and are set by copying the data value from the grid, where the interior cell
is contained (synchronization). On the root level no further boundary condi-
tions need to be considered, but for l > 0 also internal boundaries can occur.
They are set by a conservative time-space interpolation from two previously
calculated time steps of level l − 1.

Beside a general data tree that stores the topology of the hierarchy (cf. Fig.
3), the AMR method requires at most two regular arrays assigned to each sub-
grid. They contain the discrete vector of state for the actual and updated time
step. The regularity of the data allows high performance on vector and super-
scalar processors and cache optimizations. Small data arrays are effectively
avoided by leaving coarse level data structures untouched, when higher level
grids are created. Values of cells covered by finer subgrids are overwritten by
averaged fine grid values subsequently. This operation leads to a modification
of the numerical stencil on the coarse mesh and requires a special flux correc-
tion in cells abutting a fine grid. The correction replaces the coarse grid flux
along the fine grid boundary by a sum of fine fluxes and ensures the discrete
conservation property of the hierarchical method. See [2] or [7] for details.
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Fig. 4: Left: recursive integration order. Right: sources of ghost cell values.

5.2 Parallelization

Up to now, various reliable implementations of the AMR method for single
processor computers have been developed [3, 5]. Even the usage of parallel
computers with shared memory is straight-forward, because a time-explicit
scheme allows the parallel calculation of the grid-wise numerical update [1].
But the question for an efficient parallelization strategy becomes more deli-
cate for distributed memory architectures, because on such machines the costs
for communication can not be neglected. Due to the technical difficulties in
implementing dynamical adaptive methods in distributed memory environ-
ments only few parallelization strategies have been considered in practice yet,
cf. [24, 22].

In the AMROC framework, we follow a rigorous domain decomposition
approach and partition the AMR hierarchy from the root level on. The key
idea is that all higher level domains are required to follow this “floor-plan”.
A careful analysis of the AMR algorithm uncovers that the only parallel op-
erations under this paradigma are ghost cell synchronization, redistribution
of the AMR hierarchy and the application of the previously mentioned flux
correction terms. Interpolation and averaging, but in particular the calcula-
tion of the flux corrections remain strictly local [6]. In AMROC we employ
a generalization of Hilbert’s space-filling curve [21] to derive load-balanced
root level distributions at runtime. The entire AMR hierarchy is considered
by projecting the accumulated work from higher levels onto the root level
cells.

5.3 Object-oriented Implementation in AMROC

In principle, three main abstraction levels can be identified in AMR. At the top
level, the specific application is formulated with single-grid routines. Manda-
tory are the numerical scheme and the setting of physical boundary and initial
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conditions. The results in Sec. 6 were produced with subroutines in Fortran-
77. The parallel AMR algorithm and its components for error estimation, grid
generation and flux correction make up the middle level, which is completely
in C++ in AMROC. The middle level is independent of the spatial dimension
or the specific numerical scheme at the top level. The base level stores the
topology of the hierarchy and allocates all kind of grid-based data. Addi-
tionally, it provides standard operations that require topological information,
like ghost cell synchronization, interpolation or averaging to the middle level.
Furthermore, elementary topological operations on grid sets, like ∩, ∪ or \ are
supplied. The necessary calculations are done effectively in a global integer
coordinate system, cf. [1].

AMROC’s hierarchical data structures are derived from the DAGH (Dis-
tributive Adaptive Grid Hierarchies) package by Parashar and Browne [22]
and are implemented completely in C++. A redesign of large parts of the
DAGH package was necessary to allow the AMR algorithm as it was de-
scribed in the previous sections. Additional new features in AMROC are
level-dependent refinement factors rl, periodic boundary conditions, a restart
option from memory for automatic time step algorithms and a restart feature
from checkpointing files for a variable number of computing nodes. Cur-
rently, AMROC consists of approximately 46, 000 lines of code in C++ and
approximately 6, 000 lines for visualization and data conversion.

6 Numerical Results

The self-sustaining CJ detonation of Sec. 4.1 is an ideal candidate for funda-
mental detonation structure simulations, because it produces extremely reg-
ular detonation cell patterns [26]. The application of the numerical methods
of Sec. 4 in the parallel AMROC framework allowed a two-dimensional cel-
lular structure simulation, which is four-times higher resolved (44.8 Pts/lig)
than the best reference result that has been presented so far [20, 10, 13]. This
calculation was run on a small Beowulf-cluster of 7 Pentium III-850 MHz-
CPUs connected with a 1 Gb-Myrinet network and required 2150 h CPU-
time. On 24 Athlon-1.4 GHz double-processor nodes (2 Gb-Myrinet) of the
HEidelberg LInux Cluster System (Helics) our approach allowed the first suf-
ficiently resolved computation of the three-dimensional cellular structure of a
hydrogen-oxygen detonation. The maximal effective resolution of this calcu-
lation is 16.8 Pts/lig and the run required 3800 h CPU-time. Further on,
we present the first successful simulations of diffracting two-dimensional
hydrogen-oxygen detonations that reproduce the experimentally measured
critical tube diameter of 10 detonation cells. These computations demonstrate
the advantages in employing a dynamically adaptive method impressively and
used approximately 4600 h CPU-time on the Helics.
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Fig. 5: Color plots of the temperature and schlieren plots of the density on refinement regions in
the first (left) and second half (right) of a detonation cell.

6.1 Two-dimensional Cellular Structure

We extend the one-dimensional ZND detonation of Fig. 2 to two space di-
mensions and initiate transverse disturbances by placing a small rectangular
unreacted pocket behind the detonation front, cf. [20] or [7]. After an initial
period very regular detonation cells with oscillation period ≈ 32 µs show up.
We exploit this regularity and simulate only a single cell. The calculation
is done in a frame of reference attached to the detonation and requires just
the computational domain 10 cm × 3 cm. The adaptive run uses a root level
grid of 200 × 40 cells and two refinement levels with r1,2 = 4. A physically
motivated combination of scaled gradients and heuristically estimated rela-
tive errors is applied as adaptation criteria. See [7] for details. Two typical
snapshots with the corresponding refinement are displayed in Fig. 5.

The high resolution of the simulation now admits a remarkable refinement
of the triple point pattern introduced in Sec. 2. As the two transverse waves
form a perfectly regular flow, it suffices to zoom into a single triple point and
to analyze the wave pattern between two triple point collisions in detail. Fig.
6 displays the flow situation around the primary triple point A that is mostly
preserved during the last 7 µs before a collision. An analysis of the flow field
uncovers the existence of two minor triple points B and C along the transverse
wave downstream of A. While B can be clearly identified by a characteristic
inflection, the triple point C is much weaker and very diffused. B is caused
by the interaction of the strong shock wave BD with the transverse wave. The
slip line emanating from B to K is clearly present. C seems to be caused by
the reaction front and generates the very weak shock wave CI. Downstream
of BD a weaker shock wave EF shows up. It is refracted in the point F as it
hits the slip line BK. From F to G this minor shock is parallel and close to the
transverse wave, which results in a higher pressure increase in the region FG
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Fig. 6: Flow structure around a triple before the next collision. Left: isolines of YOH (black) on
schlieren plot of u2 (gray).

than in the region EF. Unreacted gas crossing the transverse wave between B
and C therefore shows a shorter induction length than gas entering through
AB. The minor shock is refracted and weakened by the reaction front at point
G and forms the shock GH that is almost parallel to CI. The downstream line
of separation between particles passing through incident or Mach Stem shock
is the slip line AD. Along its extension DEL the movement of A results in a
shear flow between the reaction zones behind the Mach stem and downstream
of BD.

6.2 Three-dimensional Cellular Structure

We utilize the regular oscillating solution of the preceding section as initial
condition for a three-dimensional simulation and disturb the oscillation in the
x2-direction with an unreacted pocket in the orthogonal direction. We use a
computational domain of the size 7 cm×1.5 cm×3 cm that exploits the sym-
metry of the initial data, but allows the development of a full detonation cell
in the x3-direction. The AMROC computation uses a two-level refinement
with r1 = 2 and r2 = 3 on a base grid of 140 × 12 × 24 cells and utilizes
between 1.3 M and 1.5 M cells, instead of 8.7 M cells like a uniformly refined
grid.

After a simulation time of ≈ 600 µs a regular cellular oscillation with
identical strength in x2- and x3-direction can be observed. In both trans-
verse directions the strong two-dimensional oscillations is present and forces
the creation of rectangular detonation cells of 3 cm width. The transverse
waves form triple point lines in three space-dimensions. During a com-
plete detonation cell the four lines remain mostly parallel to the boundary
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Fig. 7: Schlieren plots of ρ for a detonation diffracting out of the two different tubes. Left:
detonation failure for the width w = 8λ, right: reinitiation for w = 10λ.

and hardly disturb each other. The characteristic triple point pattern can
therefore be observed in Fig. 9 in all planes perpendicular to a triple point
line. Unlike Williams et al. [29] who presented a similar calculation for an
overdriven detonation with simplified one-step reaction model, we notice no
phase-shift between both transverse directions. In all our computations for the
hydrogen-oxygen CJ detonation only this regular three-dimensional mode,
called “rectangular-mode-in-phase”, or a purely two-dimensional mode with
triple point lines just in x2- or x3-direction did occur.

6.3 Structure of Diffracting Detonations

Experiments have shown that the behavior of planar CJ detonations propa-
gating out of tubes into unconfinement is determined mainly by the width of
the tube. For square tubes the critical tube width has been found to be of
the order of 10-times the cell width, i.e. 10λ [19]. For widths significantly
below 10λ the process of shock wave diffraction causes a pressure decrease

Fig. 8: Density distribution on four refinement levels at tend = 240 µs for w = 10λ. Multiple
enlargements are necessary to display the refinement levels (visualized by different gray tones).
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at the head of the detonation wave below the limit of detonability across the
entire tube width. Hydrodynamic shock and reaction front decouple and the
detonation decays to a shock-induced flame. This observation is independent
of a particular mixture. While the successful transmission of the detonation
is hardly disturbed for tubes widths � 10λ, a backward-facing re-ignition
wave reinitiates the detonation in the partially decoupled region for widths of
≈ 10λ and creates considerable vortices.

Adaptive simulations on a base grid of 508×288 cells and with four levels
of refinement with r1,2,3 = 2, r4 = 4 perfectly reproduce the experimental
observations. The schlieren graphics of Fig. 7 clearly show the extinction
for the tube width w = 8λ and the re-ignition wave for w = 10λ. These
computations correspond to a uniform grid with ≈ 150 M cells and have an

Fig. 9: Schlieren plots of ρ (upper row) and YOH (lower row) in the first (left) and second (right)
half of detonation cell, mirrored at x2 = 0 cm, 5.0 cm < x1 < 7.0 cm. The plots of YOH are
overlaid by a blue isosurface of ρ that visualizes the induction length lig .
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effective resolution of 25.5 Pts/lig in the x1-direction (with respect to the
initial detonation). At the final time tend = 240 µs the larger run for w = 10λ
uses only ≈ 3.0 M cells on all levels. Fig. 8 visualizes the efficiency of the
adaptive approach.

7 Conclusions

We have described an efficient solution strategy for the numerical simula-
tion of gaseous detonations with detailed chemical reaction. All temporal
and spatial scales relevant for the complex process of detonation propaga-
tion were successfully resolved. Beside the application of the time-operator
splitting technique and the construction of a robust high-resolution shock cap-
turing scheme, the key to the high efficiency of the presented simulations is
the generic implementation of the blockstructured AMR method after Berger
and Collela [2] in our AMROC framework [8]. AMROC provides the re-
quired high local resolution dynamically and follows a parallelization strat-
egy tailored especially for the emerging generation of distributed memory
architectures. All presented results have been achieved on Linux-Beowulf-
clusters of moderate size in a few days real time, which demonstrates that ad-
vances in computational fluid dynamics do not necessarily require large-scale
super-computers, but integrated approaches that combine fast and accurate
discretizations with sophisticated techniques from computer science.
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Abstract

In this paper we introduce the Online Recruitment System for Economic Experiments (ORSEE).
With this software experimenters have a free, convenient and very powerful tool to organize
their experiments and sessions in a standardized way. Additionally, ORSEE provides subject
pool statistics, a laboratory calendar and tools for scientific exchange. A test system has been
installed in order to visually support the reader while reading the paper.1

1 Introduction

Laboratory experimentation has been a growing field in economics for the
last decades.2 But the more experiments have been conducted in economics,
the more the issue of an appropriate methodology and organization has been
raised.

At the moment, there are the following items which are commonly agreed
to be symptomatic for economic experiments (compared to human subject
experiments in psychology and other social sciences):

1See http://www.orsee.org for a test system, downloads and a complete manual.
2For an introduction into experimental methodology and an overview about history and topics

of experimental economics see Davis and Holt (1993), Friedman and Sunder (1994) and Kagel
and Roth (1995).
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– Subjects are payed for their participation.
– Payment should reflect subjects’ performance in the experiment, i.e. the

strategy space should translate to the payoff space.3

– Subjects should be volunteers motivated by the experimenters’ payment.
– Subjects should not be deceived.

However, there is a wide variety in the procedures of maintaining a subject
pool and organizing experiments. In this paper we introduce the Online Re-
cruitment System for Economic Experiments (ORSEE), which aims

– to simplify the organization of economic laboratory experiments,
– to standardize the procedures of experiment organization,
– to depersonalize the experimenter-subject interaction,
– to allow the conduction of simple internet experiments,
– to provide information and statistics about the subject pool.

ORSEE has been implemented and has been online in Jena, Germany since
March 2003. Currently, it is used at four institutions.4 The software is main-
tained at sourceforge.net.5 There you find the orsee-announce mailing
list, a bug report and a feature request tracker. In order to support the reader
while going through this paper a test system has been installed.6

Section 2 lists the functions of ORSEE and some technical parameters.
Next, we describe the two essential views of the system: the public and the
administration area. Section 5 and 6 show how laboratory and online surveys
can be conducted in ORSEE, respectively.

Before starting, some terms used throughout this paper should be defined:
A ’session’ is defined as processing an experiment at a certain time at a certain
location. An ’experimenter’ is a person who conducts and/or administrates
an experiment. A ’subject’/’participant’ is a person who is recruited to par-
ticipate in an experiment. Using ORSEE, experimenters create experiments
which may consist of several sessions and invite subjects. Invited subjects
may register themselves at one of the experiments’ sessions in order to par-
ticipate.

3See Harrison (1989).
4Max Planck Institute for Research into Economic Systems in Jena, Humboldt University

Berlin, University of Bonn and University of Cologne.
5http://sourceforge.net/projects/orsee/
6http://www.orsee.org
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2 Features

2.1 General Features

– multiple laboratory/subject pool/experimenters/experiment types support
– attribute query selection (e.g., select female participants, select participants

who have not participated in experiment X)
– random recruitment of subjects out of subject pool
– structured public and internal experiment calendar including lab reserva-

tion for maintenance etc.
– reputation system (number of no-shows, i.e. the number of times a partic-

ipant registered for a session but did not show up)
– automated mailing for registration process
– subjects are informed by automated e-mails about the sessions they regis-

tered for
– rule based automated session reminder mailing
– subjects are able to manage their own account (without password, using an

individualized URL)
– overview about registration state
– experimenters are informed about session’s state by automated e-mails
– calendar and session’s participants lists in printable format (pdf)
– upload / download section
– build-in module for designing and conducting complete online surveys
– regular e-mails with experiment calendar and subject pool statistics to ex-

perimenters
– multiple experimenter/subject language support
– easily configurable via the web interface
– customizable layout
– open source

2.2 Technical Features

– LAMP application
· runs on Linux
· Apache webserver recommended
· uses MySQL database
· implemented in PHP

– data is completely separated from the application
– recommended system: Linux on i386/i686 processors, other unixes and

Windows Server should work as well
– further requirements: PHP on command line, webalizer for usage statis-

tics, cron daemon for regular jobs
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3 The Public Area

The public area is the part of ORSEE which visitors and (potential) subjects
can access without having a password. All information provided at these
pages can be edited in the administration section.

The rules page displays the general experiment rules set by the institu-
tion. These can include rules for laboratory experiments, internet experi-
ments, video experiments, or online surveys. The rules should contain in-
formation about the reputation system used, and the experimenters’ policy of
handling no-show-ups and late-comers. They should also contain general in-
formation about the normal procedure of an experiment, if there are payments
or not and so on. In order to deal with legal requirements and to provide trust
to potential participants ORSEE provides a privacy policy page which should
state the policy of the institution regarding the data in the recruitment system
and the data collected in experiments.

Subjects regularly have questions about details of the registration proce-
dure, the use of the system and the practices you are using to organize and
conduct experiments at your institution. The FAQ page answers these ques-
tions. They are ordered by an evaluation number, which is the sum of different
participants who thought that this note answered their question. The answer
page opens in a separate small window.

The calendar contains an overview of all experiments and their sessions.
The information about a session contains the (public) name of the experi-
ment, the time, date, duration and location of the session and the status of
the session. The latter is denoted as free places if the registration time has
not expired and there are free places left, and as completed otherwise. Thus,
sessions which are not full already but whose registration period has expired
are marked as complete at the public area.

To register in the system, potential subjects click on the appropriate link
in the menu. First participants have to choose their own sub-subjectpool.
The page will only show up if different subgroups are defined. After having
selected their subgroup, people see the rules for experiments and the privacy
policy. They have to accept both by clicking on the acceptance button before
coming to the registration page.

On the registration page (see Figure 1) people can enter their data. Only
the e-mail address, the last name, and the first name are required. A text
shown above the form indicates that providing additional personal informa-
tion can lead to more invitations. These details include gender, phone number,
begin of study, field of study, and profession (depending on sub-subjectpool).

After submitting the registration form by clicking the button, the data is
checked for doubletons with already registered participants and will be in-
serted only in a temporary table. The candidates are informed that they will
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Fig. 1: Participant Registration Form.

receive an e-mail to the account given to confirm their registration. This aims
to avoid nonsense registrations. In their confirmation e-mail participants re-
ceive a link to click on. This brings them to a page confirming their successful
registration. Now the data will be inserted in the regular participant table.

Every e-mail participants get from the system contains a link in the footer,
which leads to the participant data editing page. Here a form similar to the
registration form allows the user to change his data or to unsubscribe in order
not to get further invitations. To keep database integrity the account is not
deleted internally. If the subject tries later to register again with the system,
the system recognizes him and an experimenter can reactivate his account
by hand. On the privacy policy page we use to declare that we will delete
personal data on written request (see next Section 4).

An experiment invitation e-mail (see Figure 2) includes another link which
leads to the participant’s experiment registration page (see Figure 3). This
page consists of three parts:

– a list of future sessions of all experiments the participant has been invited
for, yet has not participated or registered so far and for which the registra-
tion period has not expired

– a list of the future experiment sessions the participant has already regis-
tered for

– a list of former sessions a participant was registered for, including a sum-
mary of finished sessions

While the two latter parts only have informational character, the first list
contains small register buttons on the right side. If a user clicks on one of
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Fig. 2: Experiment invitation e-mail.

these buttons, he registers for the corresponding session. A text above the
page informs participants about the binding character of the registration. At
the same time an e-mail is sent out to the participant’s e-mail address to in-
form him again about the successful registration, containing the date, time
and location of the session.

At a time specified at the administration page for the session a subject has
registered for (e.g., 48 hours before the session starts), a session reminder
e-mail is sent out to the participant.

ORSEE provides no mean for subjects to deregister from a session. We
rather encourage subjects to check thoroughly if they are available for the
time of the session at the moment of experiment registration. However, if
there are reasons beyond his control, the participant can write an e-mail as a
reply to his registration e-mail, and the experimenter will deregister him.

4 The Administration Area

To access the administration area, an experimenter has to log in first. User-
names, passwords and user rights are provided by a superuser administrator.

Beside the experiment organization logic, the administration area provides
a bunch of useful functions. In the options section nearly all settings regarding
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Fig. 3: Experiment registration page.

the system can be done. These are general settings as system e-mail sender
address, defaults for forms and output, colors used, professions and fields of
study known by the system, the schedule of regular tasks to be done auto-
matically by the system, default e-mail texts, the page content for the public
pages, and the FAQs listed in the public area.

In this section, also the laboratories the system serves on can be registered.
You may create different public experiment types to which participants may
subscribe and match them with the internal experiment types implemented in
ORSEE (laboratory and internet experiments, online surveys).

Different sub-subjectpools can be set up. At time of registration, subjects
self-select to a subject pool by a provided self description. This allows you
to administrate different populations, for example undergraduate students at
your university, professional internet experiment participants, PhD students
and so on.

A special strength of ORSEE is it’s multilingualism. Every output by the
system (e-mails, pages, pdf files etc.) is configured in a huge language table.
Thus, every experimenter and even every participant may select the language
to communicate with the system given that the language is installed. You may
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edit all output via the web interface, and even create a new language. To do
this, you have to translate the terms of an existing language to yours.

The experiment calendar (see Figure 4) provides the current state of lab-
oratory booking, but also the timing and registration state of sessions etc.
You may access the experiments, sessions and participant lists directly from
the calendar. The calendar is sent to subscribed experimenters as a regular
system task.

In the downloads section all general uploads like the system’s manual and
files for experiments (like instructions, programs, presentations) uploaded by
experimenters can be found. This facilitates collaboration and learning be-
tween experimenters.

The participants section allows the experimenter to maintain the subject
pool. You have the option to search through the current subject pool or
’deleted’ participants (see below), to add new participants or to send out bulk
mails to selected subjects. At each participant’s page, you will see a com-
plete history of his experiment registrations and participation (see Figure 5).
To keep database integrity, in ORSEE you cannot really delete a participant
from the database. There are three options you have:

1. You can unsubscribe the subject. This is what the participant can also do
himself at his personal data page. An unsubscribed participant will not
receive any invitations to experiment sessions anymore.

2. You can exclude the subject. This is nothing else than the unsubscription
with an additional flag set that it was not the participant’s choice to get

Fig. 4: Internal Experiment Calendar.
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Fig. 5: Participant Edit Page.

unsubscribed. A reason for exclusion might be that the subject has not
shown up at his booked experiment sessions for a certain number of times.

3. You may empty the subject’s personal data. This option is included due
to privacy issues. Only the subject’s ID will be kept in the system, but all
personal data will be deleted. You may recover unsubscribed and excluded
participant entries, but not emptied ones.

A comprehensive statistics section provides user with summarizing data.
All actions of participants in the public area, experimenter actions in the ad-
ministration area and all runs of regular tasks by the system are logged to the
database. In this section you can surf these log files.

Moreover, you may have a look at the complete webserver statistics for
the system’s server directory (generated by webalizer), graphs and tables for
experiment participation and user actions, and full subject pool statistics for
gender, profession, field of studies, experience, no-shows per month and per
count, which can be restricted to sub-subjectpools (see Figure 6).

5 Conducting a Laboratory Experiment

In this section we will describe the procedure of organizing a laboratory ex-
periment with ORSEE. The experiment overview page lists the current ex-
periments already registered in the system (see Figure 7). To list only the
experimenter’s or already finished experiments, use the links in the menu on
the left side.

From here the experimenter may access the experiment main page of the
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Fig. 6: Subjectpool Statistics.

listed experiments by clicking on the appropriate name, or create a new ex-
periment. On the experiment creation page (Figure 8) she fills in the internal

Fig. 7: Experiment Overview.
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and public name of the experiment, a description, the type of experiment, her
name and e-mail address. The public name is used to identify the experiment
in the subject area of the system, the internal name is used at the administra-
tion pages and in e-mails to experimenters.

Fig. 8: Experiment Creation Page.

After adding an experiment, the experimenter uses the session creation
page (which is accessible from the experiment’s main page) to register each
of the planned sessions with date and time, laboratory, experiment duration,
number of participants needed and over-recruited, the time of registration and
when the reminder should be sent to registered participants (see Figure 9).
When creating or editing a session the system checks whether the session
clashes with another laboratory booking and the experimenter gets a feed-
back.

Next, she assigns subjects registered in the database to her experiment.
When doing so, she can use different queries including name, e-mail-address,
number of no-shows and registrations, sub-subjectpool, gender, profession,
field and start of studies, and participation/registration at certain old experi-
ments.

ORSEE provides the feature to select a random subsample of a defined size
from the registered participants matching the query. This should be used to
prevent a bias regarding the fact that some subjects have immediate and more
often internet access than others.
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Once participants are assigned, the experimenter sends an invitation e-mail
which lists the sessions’ dates and times and includes a link to the subjects’
individualized registration page. Following this link the subject can choose
one date out of the sessions available. When registering for a session, a con-
firmation e-mail is sent to the subject.

When the registration period expires, a regular job of the system checks the
state of registration for the experiment. For each session, the experimenter
gets an e-mail informing her about the number of subjects registered, and
having attached a pdf-file containing the list of the names of participants. In
case of too few registrations the experimenter may now extend the registration
period, or cancel the session at the very end. At the time specified at the
sessions’s edit page the session reminder e-mail will be sent out.

During the whole registration process, the experimenter can observe the
current state of each session at the experiment main page. There are four
states of a specific session:

1. Not complete: There are not enough participants.
2. About complete: There are as much participants as explicitly needed for

the experiment, but not enough reserve participants.
3. Complete: The number of required participants plus the reserve is reached.
4. Finished: All data was filled in for the session. The participation data will

be used for the reputation system.

We distinguish between five different independent states (flags) of a par-
ticipant with regards to a certain experiment:

Fig. 9: Session Creation Page.
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Fig. 10: Participant Query.

1. Assigned: The participant is allowed to register for a session of this expe-
riment.

2. Invited: The participant received an invitation e-mail from the system.
3. Registered: The participant is registered for a certain session of a labora-

tory experiment.
4. Showed-up: The participant was at the right location at the right time.
5. Participated: The participant really played the game.

The experimenter may also visit the actual participant list for each session
(Figure 11).

When everything is o.k., the experimenter conducts her experimental ses-
sion in the laboratory. She fills in the show-up and participation data for all
participants. When all data is filled in, she marks the session as finished, and
its data will be included in the calculation of reputation score for the partici-
pants. When all sessions are done, the experimenter marks the experiment as
finished, and it will be listed in the "old experiments" section.
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Fig. 11: Participant List for a Session.

6 Conducting an Online Survey

A special experiment type implemented in ORSEE is an ’Online Survey’.7

After creation of the experiment, the experimenter fills in a special properties
page stating the start and stop time of the survey, the browser window size,
and a short description of the experiment (mentioning required technology
for participation and so on). The experimenter can restrict the participation to
invited subjects from the known subject pool or can allow for free registration,
specifying whether unknown participants have to fill in a personal data form.

An online survey may consist of an introductory page, an instruction page,
the personal data form, a number of questions, and an ending page. Each part
is freely configurable in ORSEE. Questions are of a certain type, have certain
predefined answering options and are organized in items. ORSEE supports
’text lines’ and ’text fields’, ’select fields’ for numbers and text, ’checkboxes’
and ’radio buttons’. The latter two can be presented as matrices. Questions
and items can be given a numbered or random order.

After having created and configured all pages and questions, the survey is
ready to start. Invited subjects can follow a link in their invitation e-mail to
participate, and if free participation is enabled, the experiment is listed in the
’Internet Experiments’ section of the public area. From the time specified as

7For the implementation of this module, we used methods described in Greiner, Jacobsen and
Schmidt (2003).
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the start time of the survey subjects are allowed to fill in the questionnaire.
While the survey is running, the experimenter can observe the participation
rate and some simple average statistics of answers.

When the survey time runs out, no subject can start the survey anymore.
The experimenter may extend the time or end the survey by marking it as
finished. Participant and decision data may be downloaded separately as excel
spreadsheets.

7 License

The Online Recruitment System for Economic Experiments is available un-
der a special open source license called ’Citeware’. Specifically, the source
code may be copied, modified and distributed under terms complying with
the Open Source Definition of the Free Software Foundation. However, the
use of derivative products is restricted in a way that any academic report, pub-
lication, or other academic disclosure of results obtained with the use of this
software will acknowledge the software’s use by an appropriate citation of
this paper.
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ODIN – Object-Oriented Development Interface
for NMR
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Abstract

A cross-platform development environment for nuclear magnetic resonance (NMR) experiments
is presented. It allows rapid prototyping of new pulse sequences and provides a common pro-
gramming interface for different system types. With this object-oriented interface implemented
in C++, the programmer is capable of writing applications to control an experiment that can be
executed on different measurement devices, even from different manufacturers, without the need
to modify the source code. Due to the clear design of the software, new pulse sequences can be
created, tested and executed within a short time. To post-process the acquired data, an interface
to well-known numerical libraries is part of the framework. This allows a transparent integra-
tion of the data processing instructions into the measurement module. The software focuses
mainly on NMR imaging, but can also be used with limitations for spectroscopic experiments.
To demonstrate the capabilities of the framework, results of the same experiment, carried out
on two NMR imaging systems from different manufacturers are shown and compared with the
results of a simulation.

1 Introduction

Nuclear magnetic resonance (NMR) is a versatile tool to investigate physical
properties of materials and living tissue. The flexibility of the NMR technique
can be attributed to the fact that a wide range of experiments is designed by
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solely altering the software that controls the hardware during the measure-
ment. With a given set of hardware components, various parameters of the
sample can be examined with different software-based experimental setups
(i.e. pulse sequences). An important task of the NMR scientist who develops
new NMR applications is therefore that of a software engineer. Provided a so-
phisticated programming interface for sequence design is available, advances
in the field of computer science can accelerate the process of creating NMR
applications.

Contemporary concepts like object-oriented design, polymorphism, and
generic programming are used nowadays in software engineering to create
modular, extensible, and easy-to-use software instead of procedural program-
ming (an excellent overview of these programming paradigms and their im-
plementation in C++ can be found in [1]). By contrast, NMR pulse sequences
are usually programmed using the procedural approach. That is, the sci-
entist provides a program that contains a list of sequential instructions to
trigger hardware-events together with some calculations to achieve the re-
quired properties of the sequence (e.g. resolution, TE, TR). This results in
a non-modular, monolithic implementation of the sequence which seriously
limits the reuse of certain parts in another sequence, except for duplicating
the source code. A modern approach would describe the sequence as a com-
position of reusable, self-consistent objects that can be combined freely to
develop new experimental setups.

Recently, a software architecture has been presented [2] which makes use
of this approach by a double-layered design whereby the user interacts with an
application framework written in Java [3] which is mapped to corresponding
C++ functionality on the hardware controller and signal processing computer.
The programming interface is provided not only for sequence programming
but also for developing work flows which incorporate different measurement
techniques for clinical application. However, this framework is limited to
the devices of one manufacturer and its double-layered design may impose
a considerable overhead when adding new functionality, for example custom
real-time feedback.

In contrast, ODIN, which is subsequently introduced, concentrates on plat-
form-independent sequence design and data processing with a single open-
source code basis in C++. The hardware-dependent components that drive
the different scanners are encapsulated into low-level objects (pulses, gra-
dients, data-acquisition) from which complex, platform-independent parts of
the sequence are constructed. The same source code is used at all stages of se-
quence development, from simulation on a stand-alone platform to play-out
on a real-time system. ODIN uses the native functionality of the graphical
user interface on each platform, allowing a seamless integration of ODIN se-
quences.
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In this paper, the first section gives an introduction into the ODIN sequence
programming interface and its underlying concepts. The design of radio fre-
quency (RF) pulses will be described in more detail as this is one of the ma-
jor strengths of ODIN. The next two sections contain additional information
about the internal representation of the sequence within the ODIN library and
the mechanisms that are used to execute the experiment in different hardware
environments. After that, strategies to visualize and simulate the sequence are
presented, and the data processing framework of ODIN is discussed. Finally,
experimental results obtained with ODIN on different platforms are shown
and compared with the results of a simulation.

2 Platform-Independent Sequence Design

An NMR experiment is basically a sequence of periods where the sample
is exposed to different magnetic field configurations, such as RF pulses and
magnetic field gradients, or periods where data is acquired. From these basic
sequence elements, complex experiments can be composed which measure
spectroscopic properties, relaxation, and transportation processes of the spins
within the sample. Magnetic field gradients extend these experiments to spa-
tially resolved data sets, i.e. images of these parameters. In addition, repeti-
tive measurements yield time series of physiological processes within living
tissue, for example neuronal activity in the human brain.

The NMR sequence can be described in terms of the physical properties of
their elements and the arrangement of these sequence elements as a function
of time. A simple NMR sequence is shown in Fig.1. This level of description
is independent of the measurement device. ODIN provides a programming
interface in terms of a C++ class hierarchy which reflects the physical aspects
of a sequence. A sequence program which is written using this framework
can be executed on different NMR hardware. The system-specific actions are
performed by a library that transfers the sequence-specific requests to the ac-
tual measurement hardware as depicted in Fig. 2. The benefit of separating
the physical logic of the experiment from the peculiarities of the current hard-
ware is the portability of the sequence program. It can be reused with other
hardware, even from another manufacturer.

2.1 Sequence Programming Interface

In the following, the term basic sequence objects refers to elements of the se-
quence that cannot be divided into smaller elements from the physical point of
view. Examples of such "sequence atoms" are periods of RF irradiation, the
application of temporary field gradients or intervals of data acquisition. Each
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RF

Gx

Gy

Gz

N times

pulse acq+ + time

Receiver

phase/deph

Fig. 1: A simple gradient-echo sequence. The inner part contains a slice-selective RF pulse,
gradients Gx, Gy, Gz for spatial encoding, and a period during which the signal is received. This
part is repeated N times for linear stepping of the gradient strength of Gy. The sequence objects
of these elements are indicated below. The operators + and / between these objects combines
them to form the sequence.
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NMR-methods (C++ source code)

NMR-hardware

Sequence Programming Interface

Hardware Driver

Raw Data

Data Processing Interface 

ODIN sequence modelling framework

Platform A
Platform B

class Epi
class Mdeft

class MySequence

ODIN data processing framework

Platform C

Epi::reco MySequence::reco

Mdeft::reco

Final Data

Simulation

Fig. 2: Flowchart of an NMR experiment performed with the ODIN framework. The sequence
programmer implements a C++ class that represents the experimental method and uses the
platform-independent sequence programming interface. An object of this class is then used by the
ODIN library to execute the sequence on the different platforms by means of hardware-specific
instructions within the library. The acquired raw data is then post-processed by a member func-
tion reco of the same class that was used for the measurement. Finally, the processed data
(images, spectra) are written to disk.
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basic sequence object is instantiated from a C++ class which handles its phys-
ical properties, for example the duration. These objects are constructed dur-
ing the initialization of the sequence according to the instructions given by the
sequence programmer. From this collection, the sequence is constructed by
grouping the sequence objects into container objects. To simplify the notion
of composing new container objects, the operators + and / are overloaded
and can be used to specify whether two sequence objects a and b should be
played out sequentially (a+b) or in parallel (a/b). As an example, the
source code for the simple sequence visualized in Fig. 1 is printed in Fig. 3.

class SimpleSequence : public SeqMethod {

private:
// Sequence objects:
SeqPulsarSinc pulse; SeqGradPhaseEnc phase;
SeqAcqRead acq; SeqAcqDeph deph;
SeqObjLoop loop; SeqDelay delay;
SeqObjList oneline;

public:
SimpleSequence(const tjstring& label) : SeqMethod(label) {

set_description("Simple Gradient Echo Sequence");
}

void method_pars_init() {
// This is the place where sequence-specific parameters can be
// initialized

}

void method_seq_init() {
// This function builds the sequence, it is called every time
// a parameter has been changed by the user

// The global objects commonPars, geometryInfo and systemInfo
// hold parameters that are common to most sequences,
// the information about the selected geometry and system
// specific properties, respectively. These parameters
// can be accessed via the appropriate ’get’ and ’set’ functions.

// Excitation pulse:
pulse=SeqPulsarSinc("pulse",geometryInfo->get_sliceThickness());

// Geometry:
// calculate the resolution in the read direction and set the number of
// phase encoding steps so that a uniform resolution will be obtained
float resolution = geometryInfo->get_FOV(readChannel)

/ commonPars->get_MatrixSize(readChannel);
commonPars->set_MatrixSize(phaseChannel,

geometryInfo->get_FOV(phaseDirection) / resolution);

// Phase encoding:
phase = SeqGradPhaseEnc("phase",

commonPars->get_MatrixSize(phaseChannel),
geometryInfo->get_FOV(phaseChannel),
phaseChannel,0.25*systemInfo->get_max_grad());

// Frequency encoding:
acq = SeqAcqRead("acq",commonPars->get_AcqSweepWidth(),

commonPars->get_MatrixSize(readChannel),
geometryInfo->get_FOV(readChannel),readChannel);

// Dephasing for frequency encoding
deph = SeqAcqDeph("deph",acq,FID);
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// One gradient echo to sample one line in k-space
oneline = pulse + phase/deph + acq;

// Sequence layout:
set_sequence( loop ( oneline + delay ) [phase] );

}

void method_rels() {
// This is the place where sequence timing is performed

// ensure correct repetition time by setting the duration of ’delay’
double linedur = oneline.get_duration();
if(linedur>commonPars->get_RepetitionTime())

commonPars->set_RepetitionTime(linedur);
delay.set_duration( (commonPars->get_RepetitionTime()-linedur));

}

void method_pars_set() {
// This function is called once before the measurement is started

}
};

Fig. 3: The source code of a simple gradient-echo sequence, implemented as a C++ class to be
used within the ODIN framework.

Besides this technique of building sequences from scratch by grouping ba-
sic sequence objects together, the ODIN library offers many predefined high-
level sequence objects as C++ classes. For example, the object acq in Fig. 1
and 3 is an acquisition window with the simultaneous application of a gradi-
ent field that is used in many imaging sequences for spatial frequency encod-
ing. These more complex objects are constructed from basic sequence objects
within the library, using the same mechanism of building container objects as
the sequence programmer would. In addition, the class of these composite
objects provides an interface that is adjusted to its high-level concept. For
instance, the object acq has a member function that returns the point in time
of the center of the acquisition window with proper consideration of the ramp
of the simultaneous gradient.

2.2 Pulse Design

A crucial part of the sequence is the application of RF pulses in order to
generate a detectable signal from a limited spatial or spectral range of spins
within the sample. The ODIN framework contains a flexible module for the
generation and simulation of RF pulses. A wide range of pulses is supported
by a plug-in style mechanism. The desired excitation profile, gradient shape
and frequency filter can be selected and modified separately to match it opti-
mally to the specific application. It can be easily extended by supplying the
module with new plug-ins which generate k-space trajectories or calculate
the RF waveform as a function of time or k-space coordinate. The following
pulse types are already supported by existing plug-ins of the ODIN library:
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– Slice-selective pulses (Sinc, Gauss), optionally with a VERSE [4] trajec-
tory for reduced power excitation.

– Adiabatic pulses (Sech [5], WURST [6]).
– Spectrally and spatially selective pulses [7] for slice-selection with a pre-

defined spectral profile (e.g. for fat suppression).
– Two dimensional (2D) pulses [8] with various excitation shapes and differ-

ent spiral trajectories.
– Composite pulses [9] which are created by concatenating one of the above

pulses with different transmitter phases and flip angles.

In addition, these pulses can be filtered either in k-space or in the time domain
using a filter plug-in. The benefit from separating the pulse shape and the tra-
jectory into different plug-ins can be illustrated by considering the generation
of 2D pulses: Each of the excitation profiles (point, box, disk, user-defined list
of points) can be used in combination with any of the 2D trajectories in order
to generate a pulse profile that is well adjusted to the requirements. For ex-
ample, an excitation profile that consists of a chain of adjacent points together
with a slew-rate optimized trajectory is useful for curved slice imaging [10].

Because the pulse module is a regular sequence object, it can be integrated
seamlessly into any NMR sequence. For example, the object pulse in Fig. 1
and 3 is a slice-selective specialization of this module using the Sinc plug-in
for the pulse shape. In addition, a graphical user interface (Fig. 4) which acts
as a front-end to the pulse module can be used for interactive pulse design
and monitoring of the corresponding excitation profile.

2.3 Loops and Vectors

An essential aspect in most NMR experiments is to repeat certain parts of the
sequence unchanged or with different settings. Examples are the repetition of
a gradient-echo with different strength of the phase-encoding gradient in con-
ventional Fourier imaging as used in the sequence of Fig.1, or the repetition
with different pulse frequencies for multi-slice acquisition.

To use this technique in a uniform manner, ODIN introduces the concept of
vector objects and loop objects. Vector objects are elements of the sequence
that are used repeatedly with different settings. The following predefined
vector classes, derived from a common base class SeqVector, are available
to the sequence programmer:

– Gradient pulses with different gradient strengths for phase encoding or dif-
fusion weighting.

– Sequence objects that drive the transmitter (RF pulses) or receiver (ac-
quisition windows) contain two vector objects for frequency and phase
switching to be used for multi-slice experiments or phase cycling.

– Delay objects with a variable duration, which is changed for each iteration.
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Fig. 4: The Pulsar user interface for interactive pulse design and simulation. The panel to the
left allows editing of the pulse parameters and shows the time courses of the RF and gradient
fields. The current settings show a 2D selective pulse, i.e. a pulse that restricts the excited spins
in two dimensions. The right-hand side displays the result of a simulation with this pulse.

– A list of user-defined rotation matrices that can be attached to gradient-
related objects in order to alter their direction subsequently.

– A container object that holds a list of other sequence objects which are
played out sequentially for each repetition.

Although this set of specialized vector classes is probably not exhaustive, the
last class may be used to easily extend this list by storing sequence objects
for each repetition into the container. This emulates the behavior of a built-in
vector class.

To specify which parts of the sequence will be repeated and which vectors
will be modified at each repetition, loop objects play a central role in sequence
design with ODIN. They possess a function-like syntax (functors) when used
within a sequence:

loop ( kernel ) [vector1][vector2]...

With this line of source code, the loop object loop is used to repeat the se-
quence part kernel while incrementing the properties of the vector objects
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vector1,vector2,... that are located within kernel. Instead of us-
ing a vector object, an integer number N can also be given as an argument to
the loop, which will then repeat the sequence part N times unchanged. By
using this common notation for all variable aspects of a sequence, new appli-
cations can be implemented rapidly without dealing with the specific aspects
of the hardware.

2.4 Sequence Parameters

Normally, each sequence has a set of parameters which specify the actual ex-
periment, for example the sampling rate for data acquisition or the duration of
the RF pulse. The sequence parameters are edited interactively within the user
interface of the measurement device, and the sequence is recalculated accord-
ing to the new settings. Within ODIN, these parameters are members of the
C++ sequence class, allowing transparent access to their values in the mem-
ber function that prepares the experiment. Well-known data types (integer
numbers, floating point numbers, Boolean values) can be used as sequence
parameters. They are designed to be used exactly like built-in types of the
C++ language, resulting in understandable source code.

The ODIN library hooks the set of parameters specified by the sequence
programmer into the native editing mechanism of the measurement device.
After the measurement, the parameters are stored on disk in JCAMP-DX for-
mat [11] together with the raw data. In the post-processing step, the param-
eters and the raw data are then read from disk. If no native mechanism for
parameter editing exists (e.g. on a stand-alone platform), ODIN provides its
own set of widgets using the Qt library [12] to edit the parameters interac-
tively (Fig. 5).

3 Internal Representation of the Sequence

Any NMR sequence has a nested structure, that is, basic sequence objects
can be grouped together to form logical units, which in turn can be collected
to build more complex units. This leads to an internal representation of the
sequence as an ordered tree of sequence objects. The leaves of this sequence
tree are the basic sequence objects (RF pulses, gradients, acquisition win-
dows, evolution delays). The sequence containers are represented by nodes
of the tree. They contain a list of references to their members in the same or-
der as given by the sequence programmer. The nodes can contain additional
information, e.g. a loop object contains the number of repetitions besides the
elements of the sequence that are repeated.
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Fig. 5: User interface for rapid sequence design. It combines frequently used functionality to
edit, compile, visualize and simulate ODIN sequences. The set of widgets for the parameters is
dynamically generated according to the specifications of the sequence module. The parameter
set for an EPI sequence is shown here.
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Fig. 6: The sequence tree of the example sequence from Fig. 1 visualized within the ODIN
framework. The first column depicts the structure of the tree whereby the basic sequence objects
can be found at the end of each branch and the container objects at the nodes, indicated by small
boxes to the left. The second and third column show the C++ type and the duration of each
object. Properties that are specific to each object are shown in the last column, e.g. the selected
RF object pulse_rf has a waveform of 326 samples with the given amplitude B1.

The tree is constructed during the preparation phase of the experiment ac-
cording to the instructions of the sequence programmer. Each sequence has
its special tree. As an example, Fig. 6 depicts the sequence tree structure for
the sequence of Fig. 3. The created sequence tree is the central data structure
that is used in further steps of the experiment. If a certain operation has to
be performed for the sequence, e.g. calculating the total duration of the ex-
periment, the sequence tree is traversed recursively, querying each object for
a value (in this case its duration), or requesting a certain operation from the
object. Thereby the starting point is the root of the sequence tree. At each
node that contains an ordered list of other sequence objects, these sub-objects
are in turn requested to perform the operation. This recursion in each branch
terminates at the leaves, if a basic sequence object is reached. The two fol-
lowing sections describe how this technique of traversing the sequence tree
is used to control the measurement device or to visualize and simulate the
sequence.
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The whole sequence (i.e. the root of the tree) is in itself a container ob-
ject, instantiated from a C++ class, which is implemented by the sequence
programmer. This class is derived from a base class that acts as an interface
between the sequence and the ODIN library. By the mechanism of virtual
functions in C++, a set of sequence-specific member functions must be pro-
vided by the sequence class that will be called during initialization, prepara-
tion, and data processing of the experiment. With this technique, all sequence
modules share a common interface which can be used by the library in a uni-
form manner.

4 Hardware-Specific Implementation

In this section, two examples show how the ODIN sequence tree can be uti-
lized to drive the hardware of two scanners from different manufacturers:

Platform A (Bruker Medspec, 3 Tesla) is driven by a pulse program which
is an ASCII file that contains a list of sequential instructions for the hard-
ware and controlling structures (loops, jumps) to repeat certain parts of the
sequence. To perform an experiment, a set of parameters must be provided
that contains the detailed settings for the measurement. The pulse program
and the parameter set cover all characteristics of the experiment on this plat-
form. ODIN maps its internal representation of the sequence to the device
by traversing the sequence tree and generating an entry in the pulse program
for each sequence object. In addition, each sequence object is asked to make
an entry into the parameter set. After transferring the generated files to the
system software, the sequence can be executed.

On platform B (Siemens Trio, 3 Tesla), the system components are driven
directly by a C++ program in real time. The corresponding source code must
be provided by the sequence programmer. It contains instructions to trigger
hardware events (RF pulses, gradients) at specified points in time. The exper-
iment is performed during run-time of this program. On this platform, ODIN
executes a sequence by traversing the sequence tree at run-time, querying
each sequence object for a corresponding event. An internal counter takes
care of the correct starting time of each event.

The above procedures presume that at least the basic sequence objects con-
tain code to map themselves to the current hardware. The hardware drivers
for the different platforms are therefore located inside these objects. The con-
tainer objects and the high-level sequence objects do not have to be aware of
how to drive the current hardware. Because the number of basic sequence
objects is limited, the hardware-specific code is located only at a few places
within the library, allowing straightforward portability to new system types.
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5 Sequence Visualization and Simulation

Even on computers where no NMR device is attached, the ODIN frame-
work can be useful for developing sequences. On a stand-alone platform,
the time courses of the different channels (RF, gradients and receiver) can be
displayed, or a simulation of the sequence acting on a virtual sample can be
performed. This is achieved by giving all basic sequence objects the capabil-
ity to generate a digitized version of themselves, i.e. a function that returns
the values of each channel for equally spaced points in time.

To generate a digitized version of the whole sequence for visualization,
the container objects can combine them recursively, traversing the sequence
tree until the whole sequence is processed. The result can then be displayed
graphically. This is currently realized by generating a multi-channel audio
file which is then displayed using conventional sound editors. In addition,
predefined functions exist which calculate important aspects of the sequence
numerically using the digitized sequence, for example gradient moments, the
strength of diffusion weighting or the k-space encoding of different coherence
pathways in a multi-pulse sequence.

For the simulation, a virtual sample that holds spatially resolved NMR-
specific properties (spin density, relaxation rates T1 and T2, frequency offset)
is required. It can be created by means of a graphic editor or a special ODIN
sequence that measures these properties with a high resolution. The digitized
version of each sequence object is then used to simulate its effect on the sam-
ple. By traversing the sequence tree, the simulation is performed in the same
order as the sequence objects would be played out on a real NMR device.
An exact solution of the Bloch equations for piecewise constant fields [13]
is utilized for the calculation: It transforms the magnetization vector at each
point of the sample recursively according to the set of values within the dig-
itized arrays of the sequence object. During acquisition periods, a virtual
NMR signal is generated by integrating over the transverse component of the
magnetization vector for all points within the virtual sample. The result of the
simulation is then a synthetic NMR signal that can be post-processed with the
same algorithm as the real signal would be processed.

This simulation strategy is most useful for analyzing imaging sequences.
Because it is limited to ensembles of isochromatic spins with single-quantum
coherences and interactions simplified by T1 and T2, other tools [14–16] are
more appropriate to generate virtual spectra of samples with different nuclei,
to simulate higher-order quantum coherences or explicit interactions. An-
other limitation is given by the finite spatial size of the volume elements:
The simulation does not account for static intra-voxel dephasing due to field
inhomogeneities (T ∗

2 ).
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6 Data Processing

In a typical NMR experiment, the RF signal that is induced by the magne-
tization of the sample and received by the coil is post-processed to obtain
interpretable data. This can be a frequency analysis for spectroscopic applica-
tions or the reconstruction of spatially resolved parameter maps for imaging.
In general, the data processing algorithm is specific to the NMR sequence
which was used to acquire the raw data. This step is supported by a software
layer that integrates external numerical libraries consistently into ODIN.

After the measurement, the raw data is processed by a function of the same
sequence module that was used for the experiment. Because this function is
implemented as a C++ member function, all parameters of the measurement
are directly accessible. The external numerical libraries can be used within
this function. After the processing step, the final data is written back to disk.

6.1 Integration of External Libraries

As a basis for further integration of external libraries into ODIN, the expres-
sion-template based multidimensional array type provided by the Blitz++-
library [17] is used to hold the NMR data during the different processing
steps. Many useful functions that operate on multidimensional arrays are
already made available by Blitz++. However, more complex numerical oper-
ations must be added separately as they are not part of Blitz++. Therefore, an
interface to the following libraries has been implemented so that they always
operate on the array type of Blitz++ and add the described functionality to it:

– NewMat [18]: Supports various matrix types and matrix calculations.
– GSL (GNU Scientific Library) [19]: Non-linear least-square fitting, inter-

polation.
– FFTW (Fastest Fourier Transform in the West) [20]: Fourier transform for

multidimensional arrays.

For example, an FFT of arrays with arbitrary dimensionality can be pro-
grammed in one line of C++-code with this integration of external libraries:

blitz_fftw(data(all,0,all));

This instruction will perform a complex in-place FFT over the first and third
dimension of the array data for all values with index 0 in the second dimen-
sion.

6.2 Processing of Large Data Files

When dealing with large datasets, e.g. for functional imaging, the problem
arises that the whole record cannot be held in memory for analysis at once.
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Splitting the file into blocks and processing them separately is therefore nec-
essary. ODIN supports this technique by read and write functions that trans-
parently iterate through the whole dataset. The programmer only needs to
specify the operation for one block. When looping over this operation, ODIN
will then read and write the appropriate block.

7 Experiments

Two sequences were executed with the same subject and the same settings
on platform A and B. Figure 7 shows the reconstructed images from a power-
reduced variant of the modified driven equilibrium Fourier transform
(MDEFT) sequence [21]. Although the position of the brain within the slice
differs due to different positioning of the subject within the magnet, both
images show the same spatial pattern and comparable contrast with a signal-
to-noise ratio of 30.5 (platform A) and 25.1 (platform B) in white matter.

In Fig. 8 the spin-echo EPI [22] experiments are compared with the result
of a simulation which was performed using high-resolution maps of the NMR
parameters (spin density, T1, T2 and frequency offset). These maps were ac-
quired on platform A during the same session. The simulation was then car-
ried out off-line on a Linux PC to generate a synthetic signal using the same
sequence code that was used for the measurements. The images are similar in
terms of contrast and image quality, but show slightly different field-of-views
in phase encoding direction which is very sensitive to frequency offsets due to
the small bandwidth. The mismatch may therefore be caused by non-optimal
compensation of the field inhomogeneities (shimming) or eddy-currents mod-
ifying the phase encoding blips. This otherwise undesired discrepancy could
be used here to study the effects of field variations and gradient imperfec-
tions. However, the general similarities between the result of the simulation
and the actual experiments indicate that the simulation can be used to repro-
duce the measurement and that it is feasible to develop and test sequences on
a stand-alone platform.

8 Availability and Licensing

The software package is published under the terms of the GNU General Pub-
lic License. It can be obtained as source code and binary packages for dif-
ferent platforms (Linux, IRIX, Windows, VxWorks) from the web [23]. The
online manual for the class hierarchy can also be found at this location.
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Fig. 7: MDEFT images from platform A (top) and B (bottom) with a matrix size of 252 × 252
pixels, FOV = 220 mm and a sweep-width of 25 kHz. This sequence type is highly sensitive to
the T1 relaxation time. Therefore it is well-suited to display anatomical structures.
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Fig. 8: Spin-echo EPI images from platform A (top), platform B (middle) and the simulation
(bottom) with a matrix size of 64 × 64, 100 accumulations, 100 kHz sweep-width and the same
slices as in Fig. 7. The phase encoding direction is aligned vertically.
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9 Conclusion

It has been demonstrated that ODIN is a valuable tool when developing and
testing NMR sequences. The sequence programming interface provides a
concise C++ class hierarchy to set up an NMR experiment within a short
time. Without changing the source code, the sequence can be visualized, sim-
ulated and executed on different NMR hardware. This is particularly useful
in laboratories where more than one scanner exists, or to exchange sequences
between research facilities with different hardware infrastructure. With the
ODIN data processing framework, a consistent interface to reliable open-
source libraries for calculating the final data is provided. The internal rep-
resentation of the experiment by the sequence tree is adequately matched to
the application domain and allows easy extensibility when porting the frame-
work to new platforms.
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Abstract 

VINCI (“Volume Imaging in Neurological Research, Co-Registration and ROIs included”) was 
designed for the visualization and analysis of volume data generated by medical tomographical 
systems with special emphasis on the needs for brain imaging with Positron Emission 
Tomography (PET). VINCI is highly modular, extensible, compact and runs well on current 
PCs, no installation is required. We achieve this with a plugin architecture; VINCI can be 
remotely controlled through several high-level language interfaces, at the basis of which is our 
own XML-based scripting language. VINCI is entirely true color based and allows online fusion 
and contour rendering of several images, more than 50 studies can be displayed simultaneously 
in orthogonal views on current machines. We also have a fully automatic registration tool 
which is suitable for routine usage and gives online feedback of a running registration.  

1. Introduction 

Modern brain imaging is multidimensional in many respects. Data sets are 
volume data sets rather than planar images, and they can be very volu-
minous. Thus, there are three basic spatial dimensions, and imaging 
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software needs to provide convenient means to represent that in an intuitive 
and representative way as multiple planes (typically oriented in parallel or 
orthogonally). Additional dimensions are along the time axis (from dynamic 
data acquisition or multiple follow-up studies in the same subject), or 
representing multiple modalities (different PET or SPECT tracers, different 
MRI acquisition protocols), or data stemming from a sample of different 
subjects’ brains (represented as individuals or as statistical parametric 
images derived from the sample).  

These various additional dimensions imply special demands for efficient 
processing and display. Accurate spatial alignment of data sets that were re-
corded from the same brain, usually called co-registration, is a prerequisite 
and the software needs to provide tools to achieve that in a fast, robust and 
reproducible way. Some data sets will represent primarily structural 
information (where borders between anatomical structures or delineating le-
sions carry the essential information), whereas others will represent 
primarily quantitative information (functional images, where voxel values 
carry the essential information). Typically, these two types of images need 
to be displayed together as closely as possible to assign the quantitative data 
to anatomical structures or lesions. Biological analysis of quantitative data 
requires statistics based on the investigation of multiple subjects. 
Quantitative values can either be obtained by extraction from anatomically 
defined volumes of interest (VOIs, based on co-registered structural and 
quantitative images), or on a voxel-by-voxel basis as statistical parametric 
images after some spatial normalization of different brain shapes to a 
common template. Thus, the software also needs to provide means for VOI 
placement and evaluation as well as for interindividual registration and 
mathematical transformation of images. 

A more recent field of research with rapidly growing impact is Molecular 
Imaging: using multi-tracer animal studies on high-resolution PET systems, 
it allows a non-invasive characterization of endogenous molecular markers. 
Co-registration of these PET images with high-resolution MRI data sets is 
even more demanding (more image artefacts, small movements of animals): 
it requires elaborate support for manual intervention, also the ability to 
compare, view and analyze several different studies simultaneously. 

Another important usage for a general imaging package is display and 
analysis of raw and calibration data from PET scanners. This is essential to 
locate potential hardware failures and find problems that have lead to 
artefacts in the reconstructed image data. 

2. Previous and Related Work 

The MPI-Tool (“Multi Purpose Imaging Tool”) is a visualization package 
previously developed at our institute ([2], [3]). It has pioneered several 
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aspects of manual co-registration for multi-modality imaging and was 
primarily developed for older versions of Solaris. Since 1998 it is available 
commercially, also for the Linux platform, [4]. 

With the introduction of our new HRRT (High Resolution Research 
Tomograph) system in 1999, it was felt that an entirely new design for a 
general visualization and co-registration package was needed, addressing 
new challenges and shortcomings of previous work, e.g. a more flexible 
architecture with plugins,  fully automatic co-registration, export of vector 
graphics and true color support, improved handling of increased image data 
sizes, scripting and remote control. VINCI was first presented as a 
visualization tool for HRRT data [6], as its true color engine was originally 
conceived for online display (separate thread on multi-processor systems) of 
a running reconstruction [7], [8]. 

VINCI can import protocol files of the older MPI-tool, we have also kept 
the reslicing engine compatible. 

Another software package developed here for multi-modality imaging, 
especially for surface rendering of co-registered functional and structural 
images and interactive definition of VOIs, is the 3D-Tool, [5]: VINCI can 
read objects/regions defined in its volume definition file format and display 
them as fusion overlay. 

3. Implementation and Design Goals 

This section describes the VINCI framework we have conceived for 
scripting, communication between different components of VINCI and 
remote control. We also explain the circumstances that have motivated 
some design decisions. 

3.1. General Concepts and Definitions 

VINCI supports an arbitrary number of image buffers: a system’s physical 
memory and the choice of data sets will limit the amount of buffers one can 
effectively use. Usually data from one image file will be assigned to one 
buffer. It can then be used by several modules for graphical display or 
analysis, e.g., one might have it displayed in two different OrthoView 
widgets and in a PlanesView at the same time. 

A VinciProject comprises any number of image buffers with reslicing 
and color settings, OrthoViews, PlanesViews, PlotViews and the respective 
widget settings (options, window sizes and positions). Each Project has an 
unambiguous name and is associated with a file from which the Project can 
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be restored in a later session. Within one instance of VINCI one can work on 
several Projects at the same time. 

Each image buffer has reslicing and color properties that will be 
consistent for one entire Project: changes to either reslicing or color 
properties of one image buffer affect (in most cases immediately) all 
displays and tools. 

3.2. Choice of Platform and Languages 

We are actively involved in the development of our PET scanners, so it was 
mandatory that we follow the manufacturer’s preference of platform: this 
explains a general shift from Solaris 2.6 (the platform favoured by previous 
generations of PET scanners) to MS Windows NT/2000/XP in the 
institute’s IT infrastructure. 

We try to use platform-independent standards throughout large portions 
of VINCI, a good example being the plugin for fully automatic co-
registration: the registration engine is also available in a non-interactive 
version for Solaris and Linux systems using the same XML-based format to 
describe registration jobs. Furthermore, VINCI’s framework is based on an 
entirely platform independent concept (VRegistry and XML-based 
VinciScript). 

Similar to a software architecture employed by Wolfram Research’s 
Mathematica package [9], we have a non-GUI backend which is mostly 
platform independent. For performance reasons and flexibility, we have 
chosen to use C++ as the principal language for development. When 
development started in 1998, for the same reasons, MS Window’s native 
MFC with C++ was the obvious choice for the GUI: clinical routine and 
several research applications require VINCI to have a highly optimized and 
customized user frontend, something that is notoriously difficult to do with 
toolkits for platform independent GUIs (with the notable exception of Qt, 
which was lacking much of its current attractiveness when we first 
evaluated it in 1999). 

We find Linux an excellent platform for our online update service and we 
use HTML templates without browser or platform specific additions for 
displaying header and status information. 

3.3. Build Process 

We are approaching 200,000 lines of source code (including comments) for 
VINCI and the co-registration plugin. In order to manage this amount of 
code at a level required for routine usage, especially with a view to team 



119 

work and international collaboration, it was instrumental to adopt several 
standard practices for software development and testing, an excellent 
summary of which we have found in [11]. 

As VINCI is shipped with the HRRT PET system which is used in a 
clinical setting, the manufacturer requires a certain level of certification 
related to the quality assurance of software now that the HRRT is no longer 
a prototype.  

•  Source Code Repository: all code, documentation and test data is checked 
into MS SourceSafe which is integrated into MS Visual Studio 7.1. 
Accessing the source code repository from outside the institute’s network 
is done frequently using VPN connections through our Checkpoint 
firewall. 

•  All changes to code, documentation and test data can be retrieved from 
the repository for any stage of the development process.  

•  Fully automated build process: all binaries are built using the latest 
versions of sources from the repository and then subjected to a number of 
automated tests, the result of which is summarized and sent by Email to 
the developers. 

•  C++ specific documentation (class hierarchies, dependencies and our 
comments) is automatically created by Doxygen, [12], in the format of an 
HTML tree which is subsequently packaged into one compressed HTML 
file. 

•  A PERL script extracts documentation for VinciScript commands from 
the sources and assembles the output into another compressed HTML 
file. 

•  A successully tested new release is automatically packaged and 
versioned. The result is ready for manual or automated installation. 

•  We keep a detailed version history which is included with every 
installation. 

3.4. Installation 

VINCI will run immediately on all current Windows versions (NT/2000/XP), 
no installation is required. However, we also provide an installer which 
mostly contains an engine for decompression of zip-files and creates 
shortcuts on the desktop and in the programs menu. As VINCI does not rely 
on external toolkits, frameworks or libraries other than MFC (this is not 
necessarily true for third party plugins) a full distribution is contained in a 
3.3 MB size installer. 
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We have derived our installer from the NSIS installer engine, [13], which is 
extremely fast and compact: it carries almost no overhead compared to the 
compressed size of the distribution’s directory.  

A popular way to install software for several systems on a network is to 
use a shared directory on a file server. Provided the server’s availability is 
satisfactory, this has proved to be a good solution for software that is static 
for longer periods of time. Compared to the size of current PC disks,VINCI’s 
small footprint is negligible which has allowed us to pursue a more flexible 
strategy: 

•  VINCI is installed locally on each system. This policy also eliminates 
problems for laptops and, more general, installations outside the 
institute’s network. 

•  We have added functionality for remote network installation, so several 
machines can be updated in an automated fashion. We support 
concurrent use of multiple versions of VINCI: each distribution is self-
contained and independent. 

•  As installation is safe, easy and fast we can and have published releases 
frequently (about once per week), reacting quickly to bug reports and 
feature requests. 

3.5. Online Update 

We have developed a one-click online update mechanism: a separate update 
process is spawned that kills running instances of VINCI and contacts the 
update server in the institute’s DMZ. After sending authentication and site 
specific license information, it transfers the current installer binary and 
launches a silent (non-GUI) default installation. Within the institute a full 
update takes less than 4 seconds, with a DSL-type connection it typically 
takes around half a minute. 

The update service has been implemented on a Linux system using http 
(cgi) for communication and ftp for the transfer. Authentication and logging 
are handled by PERL scripts, command and control is XML-based. 

3.6. Plugins 

An important part of VINCI’s architecture is the concept of plugins to easily 
add new functionality in certain, well-defined contexts. By design, plugins 
only require knowledge of a small (public) subset of VINCI’s framework. 
They are easy-to-use and maintain and thus are very suitable for third- party 
developers. At startup, VINCI scans its bin directory for files containing  
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plugins. A plugin is basically a DLL that defines an arbitrary number of 
classes derived from CVinci_Plugin. VINCI will try to call the mandatory 
function RegisterLocalPlugins() which creates instances of each plu-
gin that should be active and adds them to a global list. 

We have defined several types of plugins, the most important being the 
plugins for adding import filters. VINCI supports several very different file 
formats, among them ECAT7, Analyze, MINC, Howmedica Leibinger 
(used by neurosurgery guidance systems) and the native file types of the 
HRRT and microPET scanner families. 

Another type of plugin works on the image buffers of an OrthoView 
(OrthoTool Plugins, e.g. MMM, the registration plugin or the 3D-Gauss-
filter). 

The global list of plugins is then used to assemble the file format or tool-
box menu at runtime. We have found [14] and [15] helpful in deciding how 
to minimize dependencies between VINCI’s components. 

Loading a particular kind of image data requires a suitable Load Plugin. 
Starting from a generalized sample plugin we provide, it is basically suffi-
cient to implement the functions IsThisMyFileFormat() so VINCI can 
cycle through the list of all available load plugins to automatically select a 
suitable handler if it is supposed to make an educated guess, e.g. when a file 
has been dropped on it from the Explorer. For adapting the other mandatory 
function, LoadSpecificFileFormat(), to a particular type of image 
data, little knowledge about VINCI’s internals is needed. Adding an optional 
user interface only requires implementing a standard CDialog of arbitrary 
size. Load Plugins are embedded in the LoadView widget, see Fig. 1 for an 
example. 

The OrthoTool Plugins are activated through an OrthoToolBox: each 
toolbox has a target display which is the default candidate for manipula-
tions. Creating a plugin of this kind is very similar to writing a load plugin; 
the toolbox automatically adjusts to the size of the plugin’s user interface, s. 
Figs. 2, 3 and 5 for examples. Each OrthoView can have an arbitrary num-
ber of toolboxes associated with it, several tools can be associated with each 
OrthoDisplay. 

3.7. VinciScript 

We realized at an early development stage that scripting, or, in general, a 
(type) safe and easy way to exchange messages between VINCI’S objects 
was desirable. The heart of which is a global entity, VRegistry, that main-
tains a flat namespace (using a hash for efficiency) where each object of 
class CVinci_XMLTarget is automatically registered with a unique name 
on instantiation that also reflects heritage between objects, e.g.  
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::Project_0::LoadView  
to identify the LoadView of the first VinciProject (s.b.), or 
::Project_1::OrthoView_1::ToolBox_3 
 ::Image Volume Filter_0 
to refer to an image filter tool owned by a certain toolbox that belongs to the 
second OrthoView. Each CVinci_XMLTarget has a handler to process 
XML-based commands, VinciScript, addressed to it. We provide a large 
number of methods to navigate the VRegistry’s namespace and to send 
messages safely: by checking the address range and a magic function first, 
we make sure objects are valid before they are accessed. 

Processing of VinciScript has been optimized: top-level XML-commands 
are delegated to a hash-based handler (which also automatically processes 
several special commands, see next section) and we can mostly use our own 
XML parser, an iterator, which is easy to use, compact and very fast 
because it only needs to understand a small subset of XML (one level only, 
no attributes). 

3.8. VinciProject and Validation 

A VinciProject in many ways resembles the document part of a Document-
View framework. To stay with that terminology, we have implemented a 
multi-document interface: several VinciProjects can be opened in one ses-
sion, the context is defined by the heritage of the top-most window. 

Any VinciProject file consists of ParameterSection blocks, which 
contain VinciScript that is addressed to a particular target. The project par-
ser treats the sections as black boxes and dispatches the commands to the 
specified targets. The meaning of some special tags (New, Del, Create, 
Action, Current) can be deduced from several example scripts. 

Each VinciProject is signed with a MD5 checksum: if it has been edited 
outside of VINCI, a warning message will be issued. We also save MD5 
fingerprints of image data referred to in the project file. Thus we can ensure 
the fidelity of VinciProjects which have been relocated, e.g. from an insti-
tute’s network with central file servers to a laptop (USB stick) for external 
presentations using VINCI’S “Pack and Go” manager.  

3.9. Remote Control, High-Level Interface 

The project parser in conjunction with VinciScript is a good basis for 
scripting VINCI. Remotely controlling one or more instances of VINCI only 
requires one more ingredient: a means for inter-process communication. We 
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have chosen to use named pipes: they have a sound UNIX heritage, are ro-
bust and efficient. 

Several examples in the external-directory of a VINCI distribution 
show how VINCI can be controlled remotely by programs written in C/C++, 
IDL and PERL. In a standard installation of a VINCI distribution, we run a 
post-install program (see PostInstall.xml in VINCI’s bin-directory) to 
adjust the one statement that links an external program to one particular 
VINCI distribution.  

We provide a number of higher-level routines that conveniently summa-
rize several VinciScript commands and also allow fast, diskless transfer of 
binary data from an instance of Vinci to the external C/C++/IDL program, 
and back.  

We find IDL particularly suitable to use with VINCI because we were 
able to put a lot of consistency checks into our library, the language is easy 
to learn and very popular with researchers involved with tomography. 

3.10. Automated Tests, Online Tutorial 

We have learned to appreciate automated tests as an integral part of the 
build process. Testing non-GUI backends is mostly a straight-forward task 
in our case: we have conceived literally hundreds of tests that compare test 
answers to “manually” validated reference data and report differences. 

However, testing complex user interfaces is generally a much more 
demanding issue. We have started to enhance our framework with function-
ality found in macro-recorders: VINCI keeps track of (high-level) user 
actions (changing color settings, opening a toolbox, changing reslicing set-
tings, manipulating ROIs, etc.) and can play them back. This is very differ-
ent from hooking into mouse and keyboard drivers and playing them back 
as low-level events (an approach favoured by many APIs for automated 
tests). 

When recording a test sequence, VINCI creates a number of files with 
state information about recent operations. Replaying the sequence during an 
automated test, creates a new set of files which are compared (using MD5 
checksums) to data generated during a supervised reference run. 

We have compiled a CD-ROM that contains a ready-to-run distribution 
of VINCI, some demonstration data and an interactive tutorial (demo). The 
latter is largely a by-product of our efforts with automated tests and does 
not involve Macromind Director or any such product.  
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3.11. Multi-stage Undo/Redo 

Another by-product of our efforts for automated tests is VINCI’s Protocol 
widget. Similar to Adobe Photoshop’s History feature, it lists recorded 
actions eligible for Undo and Redo operations. The screenshot in Fig. 5 
shows a typical listing, green entries can be redone, clicking any entry of 
the list will undo or redo all steps back or forward to that stage—which is 
helpful for manual co-registration. 

3.12. Graphics 

VINCI is entirely true color based which eliminates a number of complica-
tions and limitations compared to systems relying on 8-bit indexed colors. 
The true color engine is built around a small number of comparatively low-
level blitting functions which are supported by all graphics boards for the 
MS Windows platform. VINCI offers live (immediate feedback) fusion 
overlay for up to four images, see Figs. 2 and 6 for a fusion of two images. 
A Palette Editor is included which can be accessed through the color plugin 
and allows to create new color palettes. All builtin palettes are encoded 
(XML) using interpolation markers and can be customized. 

VINCI can export graphics through the clipboard (a particular OrthoDis-
play, a PlanesDisplay, Scatter Plots, a color bar) retaining vector properties 
(text can still be edited) or as bitmaps rendered at a higher resolution to 
minimize aliasing. The former is especially useful if working with MS 
Powerpoint, OpenOffice Presentation or Adobe Illustrator to create posters. 

Our reslicer supports several rendering modes: depending on the dimen-
sions of the original image and the display size, a 3D-interpolation (trilin-
ear, next neighbour) can be followed by a 2D-interpolation (linear, bicubic 
and high resolution cubic spline, [10]). For viewing and analysis of scanner 
raw data, we also support a “pixel native” mode (dubbed TruePixel mode): 
it guarantees to reslice parallel to the image volume’s native axes only (no 
interpolation), 2D-rendering, if necessary, is limited to pixel reduplicaton. 

3.13. Printing/pdf,  MS Excel/OpenOffice support, Online help 

You can print OrthoViews and PlanesViews directly to any printer sup-
ported by MS Windows. The layout can be customized with some XML-
based configuration files: PR*.xml in VINCI’s template- directory. By 
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default, the layout includes information automatically inserted from the im-
age file and the institute’s logo (vector graphic). 

If Acrobat Distiller (or any similar printer driver) is installed, VINCI can 
generate high-quality electronic documentation (pdf) by simply printing to 
the Distiller printer driver. 

Several tools generate table-type output, e.g. the ROIReport which 
evaluates ROIs in several scopes (project, OrthoView, OrthoDisplay) over 
several frames or files, or the Time Activity Curve tool. VINCI can write 
native file formats for MS Excel and OpenOffice Spreadsheet using an 
XML template-driven approach which allows predefined layouts with style 
and type attributes (thus numbers will be interpreted correctly regardless of 
a system’s locale).  

VINCI has a “one-source” online help system: the online manual is writ-
ten with Adobe FrameMaker and then converted to compressed HTML 
using Webworks Publisher Pro with a customized rule base, or saved as pdf. 

3.14. Optimization 

We have been using the Intel compiler plugin, [17], since version 5.0 for 
validation and debugging. Several optimization options are now also avail-
able with MS Visual Studio 7.1 and have given us a significant speed gain 
for co-registration, using Pentium IV specific optimization for vectorization. 

3.15. UNIX support 

Our institute has a heterogeneous IT-infrastructure (Solaris 2.6/7/8, Linux 
Suse 7/9/Red Hat, Windows NT/2000/XP). Several central file systems are 
(traditionally) served by Solaris machines running Samba which is a popu-
lar and mostly efficient solution to share data between UNIX workstations 
and PCs. We use NIS+ to manage network wide (virtual) directories.  

VINCI uses a rule based approach to map UNIX file names to Samba 
paths. Text in clipboards can optionally be converted to UNIX line endings. 

Clipboard export also works for OpenOffice Presentation and Text, as 
does writing of native OpenOffice spreadsheet files (s.a.). OpenOffice files 
can then be processed on several UNIX platforms. 

4. Fully Automatic Co-Registration (MMM-Plugin) 

The general principle of the registration algorithm is an iterative search for a 
transformation that optimizes a similarity measure of alignment of two 
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image volumes. We consider (a) rigid-body transformations for multi-mo-
dality intra-subject registration and (b) non-linear deformations for inter-
subject spatial normalization.  

Method (a) is, e.g., needed for co-registration of a PET-study and a MR-
study of the same patient to fuse anatomical and functional information into 
one image for diagnostic purposes, see Fig. 6 for an example. Method (b) 
allows to transform image data of one patient into a standardized image 
space for statistical analysis (another Vinci plugin), e.g. comparisons with 
collectives of control studies. 

The similarity measure of choice for co-registration of images from 
different modalities (method (a): MRI-CT or MR-PET) is Mutual Informa-
tion (MI) which has proven to be a very reliable and precise criterion, [19]. 
For method (b) we use a hierarchical subdivision of the first image volume 
into blocks that are individually co-registered using affine transformations 
to the corresponding blocks of the second image volume. The resulting 
transformation is interpolated between those blocks.  

For optimization of the similarity measure we use the downhill simplex 
optimization method, [20]. We have implemented this in a multi-scale 
approach (coarse-to-fine optimization) which reduces the computational 
demand significantly without loss of accuracy. 

To further improve robustness and speed of the registration process, we 
evaluate different techniques for automatic masking of non-brain voxels 
(intensity thresholding using a image histogram, morphological operations, 
[21]). 

The Multi Modality Matching Tool (MMM) is used routinely at the 
institute for a number of co-registration tasks. As mentioned in section 3.2, 
the registration engine is also available in a non-interactive version for So-
laris and Linux systems using the same XML-based format to describe reg-
istration jobs. BeeQ, the queue manager we developed for the HeinzelClus-
ter [8], is well suited to run these registration jobs on several servers in a 
user-friendly and controlled way. 

5. Outlook 

VINCI is the standard visualization tool for the HRRT brain scanner, [1]. It 
is already being used routinely in multi-modality environments and can be 
easily adapted to new challenges due to its modular architecture. 

With newly introduced indexed volumes in VINCI, we provide accurate 
quantitation for current and future molecular imaging techniques making 
use of regions and volumes of interest. Interest in further commercial distri-
bution of our software for scientific and clinical applications has been 
expressed by several parties. 
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