
Automatic Vectorization of Stencil Codes with the
GGDML Language Extensions

Nabeeh Jumah
Researcher

Informatik Department
Universität Hamburg
Hamburg, Germany

jumah@informatik.uni-hamburg.de

Julian Kunkel
Lecturer

Computer Science Department
University of Reading

reading, UK
j.m.kunkel@reading.ac.uk

Abstract
Partial differential equation (PDE) solvers are important for
many applications. PDE solvers execute kernels which apply
stencil operations over 2D and 3D grids. As PDE solvers
and stencil codes are widely used in performance critical
applications, they must be well optimized.
Stencil computations naturally depend on neighboring

grid elements. Therefore, data locality must be exploited
to optimize the code and to better use the memory band-
width – at the same time, vector processing capabilities of
the processor must be utilized.
In this work, we investigate the effectiveness of using

high-level language extensions to exploit SIMD and vector-
ization features of multi-core processors and vector engines.
We write a prototype application using the GGDML high-
level language extensions, and translate the high-level code
with different configurations to investigate the efficiency
of the language extensions and the source-to-source trans-
lation process to exploit the vector units of the multi-core
processors and the vector engines.

The conducted experiments demonstrate the effectiveness
of the language extensions and the translation tool to gen-
erate vectorized codes, which makes use of the natural data
locality of stencil computations.

Keywords HPC, Earth system modeling, Stencil computa-
tion, SIMD

1 Introduction
Stencil computations are essential for many applications in-
cluding PDE solvers. Earth system modeling is one of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
WPMVP’19 , February 16, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6291-7/19/02. . . $15.00
https://doi.org/10.1145/3303117.3306160

sciences that uses stencil codes extensively to simulate pro-
cesses on the earth surface. The modern simulation appli-
cations are highly demanding for performance. Simulation
codes should optimally use the features of the hardware to
allow the models to run under specific time constraints.

Among the hardware features of the modern architectures
are the vector units and the single instruction multiple data
(SIMD) operations. Such capabilities allow the machine to
execute a single mathematical operation on a whole vector
at once. Besides to the vectorized mathematical operations,
such architectures provide data movement instructions that
operate on vectors.

General-purpose language compilers can generate vector
instructions to handle the data movement and the mathe-
matical operations. However, they require that data is in a
suitable layout in memory, and they recognize appropriate
patterns. To exploit the architectural capabilities of handling
vector operations, the structure of the data in memory should
be optimal to allow the vector data movement instructions
to be used. Unit stride arrays access, where data are contigu-
ously placed in memory, and accessed with the right loop
orders are best fit for vectorization. Therefore, transforming
layouts from array-of-structures (AoS) to structure-of-arrays
(SoA) and the alignment of these arrays is essential to use
vector instructions. Stencil computations are naturally fit-
ting to a SoA data structure as computations are based on
access to neighboring grid elements.
In this paper, we discuss using high-level coding and the

capability to automatically generate vectorized codes from
a high-level source code using source-to-source translation
tools. We demonstrate the capabilities on a prototype appli-
cation that solves the shallow water equations [1] developed
with the General Grid Definition andManipulation Language
(GGDML) set of high-level language extensions [7] according
to the source-to-source translation process suggested in [6].
A tool translates the GGDML code and applies certain opti-
mization procedures driven by user-provided configuration
files.
One important feature of the mentioned translation pro-

cess is the flexible way to configure the memory layout by
expert users, which gives them full control on the place-
ment of the elements in memory. This allows the users to

1

https://doi.org/10.1145/3303117.3306160

WPMVP’19 , February 16, 2019, Washington, DC, USA Nabeeh Jumah and Julian Kunkel

choose the data layout that enables compilers to use vector
operations efficiently.

The main contribution of this work is the extension of
the translation process by applying user-guided loop trans-
formations that tune the access within loops to match the
memory layout in order to achieve optimal vectorization. The
idea is to use the right combinations of memory layout and
loop structure based on the semantics provided by GGDML
from the source code and the provided user configuration.

This paper is structured as follows: First, we discuss re-
lated work in Section 2. Next, in Section 3, we discuss the
methodology that we use for this work. The experimental
results are presented in Section 4. Finally, the work is con-
cluded in Section 5.

2 Related Work
Efforts to exploit vector units and vector instructions evolved
from manual optimization to automatic tool-aided solutions,
and to vectorize data with multiple dimensions.

Data layout and loop transformations: A data layout
transformation technique to solve stream alignment con-
flict in stencil computations is presented in [4]. Again data
layout and other loop transformations were used to optimize
a set of high order finite difference kernels in [12] to support
vectorization.

Autotuning and DSLs: Besides to the manual optimization
of the stencil codes to exploit the vectorization capabilities
of the underlying hardware, other techniques were explored
including autotuning and domain-specific languages (DSLs).
An autotuning technique was proposed in [3] to optimize
stencil computations. In this work, the authors developed
a set of optimization strategies, and an autotuning environ-
ment to select a strategy with the right parameters to mini-
mize execution time. Autotuning was used in [8] to generate
optimized codes based on sequential Fortran 95 codes.
PATUS [2] is a code generation and autotuning frame-

work to develop stencil computations that used autotuning
together with a DSL. A C-like DSL is used to describe stencils,
and the framework generates the code using optimization
strategies. Another DSL, the SDSL (Stencil domain-specific
language), was proposed in [5] to describe stencil computa-
tions. A compiler is also presented to generate code which
goes through an optimization process that includes vector-
ization.

Specialized DSLs: A more complicated technique that im-
proves vectorization besides to caching improvements was
presented in [10]. Vector folding is a technique to vectorize
data in 2D and 3D stencils. The technique constructs vectors
from multi-dimensional data blocks instead of the conven-
tional vectorization over a single dimension. The technique

was used within YASK [11] to improve the use of the mem-
ory bandwidth and the vector units of the Xeon and the
Xeon Phi processors. YASK provides a DSL to describe sten-
cil computations; it then applies the vector folding technique
automatically and generates optimized codes for specific
processor families.
Our work differs from related work. While we use DSL

concepts to describe stencil computations, we use a set of lan-
guage extensions, which represent an addition to a general-
purpose language. We use the GGDML set of language exten-
sions described in [7]. Instead of using DSL compilers, which
handle static grammars of DSLs, we use a flexible source-
to-source translation technique described in [6] which can
be configured and extended by experts and users. An im-
portant feature of GGDML and this translation technique is
the adaptability and extensibility of the language according
to the domain or the application needs, and the flexibility
of the translation tool to handle the modifiable language
extensions. With the tool, we are able to generate optimized
codes for different architectures and configurations.

3 Methodology
The approach pursued in this paper is as follows: Based on
the GGDML iterator semantics, we extend the translation
process by transforming the internal data structure that de-
scribes the loop structure allowing to generate variants of
loop structure and order with memory layout transforma-
tions (see Figure 1).

This approach is then evaluated:
• We develop a prototype application to solve the shal-
low water equations [1] using the GGDML language
extensions.

• Initial configuration files to generate codes for the
architectures of multi-core processors and vector en-
gines are prepared.

• We added the necessary information to the initial con-
figuration files to apply the new transformations.

• Clones of the configurations are created to explore
alternative array stride and data placement options
and check the impact on vectorization. We explore
three different alternatives:
– Contiguous data placement and access
– Array data separated by a short distance (4 bytes
between two consecutive array elements)

– Scattered data elements, where loops access data in
a bad order

• Code is translated based on the different configura-
tions (different data placement and access and different
architectures).

• The different versions were run and profiled with Lik-
wid on the Broadwell and Ftrace on the Aurora.

The generation of the scattered array accesses is enabled
by the capabilities of the translation technique. The same

2

Vectorization of Stencil Codes with GGDML WPMVP’19 , February 16, 2019, Washington, DC, USA

Source code

Iterator semantics

User configurations
Build loop
descriptor

Generate loops

(a) Original loop optimization

Source code

Iterator semantics

User configurations
Build loop
descriptor

Modify loop
descriptor

Generate loops

added iterator options

(b) Extended loop optimization

Figure 1. Extending loop optimization to generate vectorized code

is true for the arrays with separated elements, where array
elements are separated by some distance according to some
formula (e.g. separated by a constant distance of one element
or four bytes in the case we test in this paper). This capa-
bility is useful for example to allow users to evaluate SoA
performance, while still using AoS code.

3.1 GGDML
GGDML is a set of language extensions that was developed to
provide performance portability for earth system modeling
applications. It was developed to use scientific abstractions
for the code development, and to use the semantics of those
abstractions to allow the translation tools to optimize the
code through the translation process.

The use of GGDML is demonstrated in the example code
snippet in Listing 1, which demonstrates field declaration
besides to a simple iterator.

Listing 1. Example GGDML based code
f l o a t EDGE 2D f_U ;
f l o a t EDGE 2D f_UT ;
. . .
f o r e a ch e in g r i d
{

f_U [e]= f_U [e]+ f_UT [e] ∗ d t ;
}

Two fields are declared in this example on the edges of the
a two-dimensional grid. An iterator updates the values of
one field according to a mathematical expression. The code
tells that the expression is applied over the edges of the grid,
but not the actual memory allocation and access.

Another code example (Listing 2) shows the use of user-
defined language extensions to represent relationships be-
tween grid components. Those extensions simplify the ac-
cess to the other related components. In the example, the
tendency of the surface level (f _HT) is computed at the cen-
ters of the grid cells. It is computed based on the X and Y
components of the flux (f _F and f _G respectively), which re-
side on the edges of the grid cells. The keywords east_edдe(),
west_edдe(), north_edдe(), and south_edдe() allow referring
to the edges of the cell c . Edge references are abstractions of
the grid concepts, where no details about where the data is
actually stored in memory.

Listing 2. Grid component relationships in GGDML
f l o a t CELL 2D f_HT ;
f l o a t EDGE 2D f_F ;
f l o a t EDGE 2D f_G ;
. . .
f o r e a ch c in g r i d
{

f l o a t d f = (f _F [c . e a s t _ edg e ()] −
f _F [c . west_edge ()]) / dx ;

f l o a t dg =(f_G [c . nor th_edge ()] −
f_G [c . sou th_edge ()]) / dy ;

f_HT [c]= d f +dg ;
}

The iterator in this example traverses the cells of the grid.
It uses the extensions to access the edges of the cell, and
reads the flux values to eventually compute the surface level
tendency. The demonstrated keywords to access the edges

3

WPMVP’19 , February 16, 2019, Washington, DC, USA Nabeeh Jumah and Julian Kunkel

from the cell are defined by the users through configuration
files.
User-provided configuration files are used to translate

GGDML codes into a usable code. Different optimization
procedures are applied during code translation. Configura-
tion files include different sections to guide the application
of different optimization procedures.

3.2 Code Translation
The high-level code, e.g., the iterator, is translated into op-
timized loops in general-purpose language. Parallelization,
blocking, domain decomposition and other optimizations
are applied during the translation process. The translation
tools can decide which optimizations to apply based on the
contents of configeration files.
We implement the translation technique using a Python

script. Such an implementation allows to simply ship the
translation tools with the code repositories and reduces tool
maintenance efforts. The script parses the source code and
generates an AST. Using the user-provided configuration
files, the translation tool applies the different transformations
to the AST.

The users control the parallelization strategy on the node
to optimally use the underlying hardware, e.g. cores or warps
and streaming multiprocessors. Parallelization on multiple
nodes is also controlled by users, where users configure
the communication of the different halo patterns. Domain
decomposition can be either done automatically by the tool,
or can be guided by the user.

Blocking is another example optimization procedure that
can be applied by the tool. Users can control the blocking
factor through a section within the configuration files that
guides the tool to apply the necessary AST transformations
to handle blocking.

Listing 3 is a sample from a configuration file demonstrat-
ing how the user provides different options to drive the code
transformation process.

Listing 3. Example configuration file contents
. . .
RANGE OF YD= 0 TO GRIDY
RANGE OF XD= 0 TO GRIDX
. . .
CBLOCKING :
XD=10000
ENDCBLOCKING
. . .
INDEXOPERATORS :
e d g e _ r i g h t () : XD=$XD+1
. . .

The sample shows a sectionwhere the user defines the ranges
of the two dimensions of the grid. It also shows how the user
guides the blocking process by guiding the tool to block the

X dimension with block size of 10000. Another section in this
sample shows how the language extensions are specified to
define the relationship between grid components, and how
the indices are transformed based on those extensions.
Besides to the mentioned transformations, the flexibility

of the memory layout transformations allows the users to
control the placement of data in memory. To support an alter-
native layout, firstly, a configuration with the suitable trans-
formation must be generated, secondly, the code is linked to
the implementation of the alternative data structures. This al-
lowed us in our experiments to generate codes with different
striding options.

3.3 Matching Access to Loop Structure
The translation of the code in Listing 1 generates the code
in Listing 4 based on a prepared configuration file. The array
access indices are translated based on a specified data layout,
where the XD_index (inner) loop accesses contiguous array
elements.

Listing 4. Resulting vectorizable code
#pragma omp f o r
f o r (s i z e _ t YD_index = (0) ;

YD_index < (l o c a l _Y_E r e g i on) ;
YD_index ++) {

pragma omp simd
f o r (s i z e _ t XD_index = b l k _ s t a r t ;

XD_index < b lk_end ; XD_index ++) {
f_U [(YD_index)] [(XD_index)] =

f_U [(YD_index)] [(XD_index)] +
f_UT [(YD_index)] [(XD_index)] ∗ d t ;

}
}

The code in Listing 4 is vectorizable, because the loop ac-
cess patterns are matching the data layout to support the
use of the vector operations instructions. However, chang-
ing the access patterns, e.g., interchanging the XD_index
and YD_index loops or changing the data layout without
changing the loop body accordingly (see the changed loop
body in Listing 5), will limit the vectorization.

Listing 5. Resulting bad-performing operation not matching
the selected loop order

f_U [(XD_index)] [(YD_index)] =
f_U [(XD_index)] [(YD_index)] +
f_UT [(XD_index)] [(YD_index)] ∗ d t ;

Themain extension that we suggest to the translation tech-
nique described in [6] is to allow the user to guarantee the
matching of the data layout and the access patterns within
the loops to the data to optimally exploit vectorization.

All the accesses to the different fields in all stencil opera-
tions within a kernel are transformed through the memory

4

Vectorization of Stencil Codes with GGDML WPMVP’19 , February 16, 2019, Washington, DC, USA

layout transformation procedures, which decide the transfor-
mations for each access. Besides to those transformations, the
structure and the order of the loops is transformed through
the suggested transformation procedure, which allows the
index transformations to use caches efficiently.

4 Evaluation
In this section, we describe the experiments and the results.

4.1 Test Application
The test application solves the shallow water equations on a
2D regular grid with cyclic boundary conditions. The appli-
cation uses an explicit time stepping scheme in which eight
fields are updated once in each time step. Each field update
is executed within a single kernel.

4.2 Test Systems
The multi-core processor experiments are run on dual socket
Broadwell nodes. The processors are Intel(R) Xeon(R) CPU
E5-2697 v4 @ 2.30GHz. We used the Intel C compiler (ICC
17.0.5 20170817).

The vector engine experiments were run on a machine
fromNECwith the SX-Aurora TSUBASA vector engine using
the NCC (1.3.0) C compiler.

The used Broadwell processor contains 18 cores (36 threads),
which share a 45MB SmartCache for L3 caching. The max-
imum memory bandwidth of this processor is 76.8 GB/s. It
supports the Intel(R) AVX2 instruction set extensions. The
AVX2 works with registers of length 256 bits. The vector
operations are applied with those vector lengths.

The SX-Aurora vector engine contains 8 cores. Those cores
share a 16MB last level cache. The maximum memory band-
width of this vector engine is 1.2 TB/s. Each register on the
SX-Aurora holds 256 entries (64 bits). Each core contains
three FMA pipes each of which can handle 32 double preci-
sion floating point operations per cycle.

4.3 Multi-core Processors
First, we generated the code for the multi-core processors, in
three code versions: scattered access, constant short distance
between array elements, and contiguous array elements. We
profiled the three code version with Likwid[9]. The measure-
ments for the different kernels are shown in Table 1.

The first eight rows show the measurements for the differ-
ent kernels. The runtime and the measured GFLOPS perfor-
mance of the AVX instructions are shown in the three code
versions. The last row summarizes the runtime and the mea-
sured GFLOPS of the whole application (total application-
level measured GFLOPS and not only AVX).
For the code with contiguous array elements, if we mul-

tiply the time by the GFLOPS we find that the first eight
kernels executed around 4.9 · 1012 FLOP on the AVX vector

units. This is close to the measured total GFLOPS of the ap-
plication. In the code with constant short distance separating
its elements, some kernels were vectorized. Performance of
this code is nearly half that of the contiguous array version.
However, for the code with scattered access, the executed
operations on the AVX vector units are 0, and the perfor-
mance was only 12% of the performance that the unit stride
code achieves.
In fact, the vectorized arithmetic operations are not the

only factor of those results, but also the vectorized data move-
ment and memory access patterns. The memory access to
the non-contiguous arrays degrades the role of the caches,
and hence the use of the memory bandwidth. This explains
the ratio of the performance of the array with constant short
distance between elements to the performance of the con-
tiguous array code. In the code with elements separated by
constant short distance, we use 4 bytes to store a single pre-
cision value and there are 4 bytes separating the values, the
ratio of the needed data is 4:8. Thus, the efficiency of using
the memory bandwidth is half that of contiguous array, and
performance is also the same ratio. For stencil computations
it is well known that the optimal use of the memory band-
width is critical to achieve an optimal performance. This is
because stencil computations are memory bound.
Given the arithmetic intensity of 0.45 FLOP/Byte of the

application, and the measured memory throughputs around
68GB/s1 (theoretical bandwidth 76.8GB/s), the code with
contiguous arrays is nearly optimal as it achieves 80% of
the theoretical memory bandwidth. The code generation
generated vectorizable code applying a single pattern across
several operations.

4.4 Vector Engines
We generated again three code versions of the same source
code for the Aurora vector engine: scattered access, constant
short distance between array elements, and contiguous array
elements. Ftrace was used for themeasurements, in whichwe
record performance metrics for the different kernels. Results
are shown in Table 2.
The first eight rows show the measurements for the dif-

ferent kernels. The runtime and the measured GFLOPS per-
formance are shown for both the three code versions. The
last row summarizes the runtime and the measured GFLOPS
of the whole application.
The arithmetic operations of all codes are executed by

the vector units. However, the efficiency of using the vec-
tor units differs, where the contiguous array code is nearly
twice the performance of the code with constant short dis-
tance between array elements, and four times faster than the
code with scattered access. Again, the vectorization of arith-
metic operations is not the only factor of this result, but also
memory access patterns. As with multi-core processors, the

1According to Likwid’s stream_sp_mem_avx benchmark
5

WPMVP’19 , February 16, 2019, Washington, DC, USA Nabeeh Jumah and Julian Kunkel

Scattered Constant short distance Contiguous

Kernel Time (s)
AVX

GFLOPS
Time (s)

AVX
GFLOPS

Time (s)
AVX

GFLOPS

flux1 250 0 52 0 27 11
flux2 248 0 54 0 27 11
compute U tendency 431 0 80 21 41 41
update U 158 0 39 0 20 10
compute V tendency 432 0 94 18 47 37
update V 158 0 40 0 20 10
compute H tendency 251 0 55 0 28 11
update H 158 0 40 0 20 10

Application Level 2,103 3 466 13 244 25

Table 1. Performance measurements on Broadwell

Scattered Constant short distance Contiguous
Kernel Time (s) GFLOPS Time (s) GFLOPS Time (s) GFLOPS

flux1 5.37 56 3.96 76 1.30 230
flux2 5.36 56 4.08 74 1.51 199
compute U tendency 20.67 92 8.26 230 5.29 359
update U 3.82 52 2.44 82 1.21 166
compute V tendency 20.66 97 9.12 220 5.22 384
update V 3.82 52 2.43 82 1.21 165
compute H tendency 6.88 73 4.26 117 1.52 330
update H 3.82 52 2.44 82 1.20 167

Application level 70.40 80 37.17 161 18.63 322

Table 2. Performance measurements on the NEC Aurora

memory access to non-contiguous arrays degrades the role
of the caches, and hence the use of the memory bandwidth.

As mentioned before, the arithmetic intensities of the ap-
plication level are 0.45 FLOP/Byte. The theoretical memory
bandwidth of the used vector engine is 1.2 TB/s. Based on
the numbers, the code with contiguous array elements is
nearly optimal as it runs with a high percentage (80%) of the
theoretical memory bandwidth.

5 Summary
In this paper, we presented a strategy to generate and op-
timize high level codes in order to match data layout and
memory access patterns for yielding vectorizable code. We
also investigated the performance impact of changing the
array stride and data layout and access in the generated
codes.

For the evaluation, we used an application that solves the
shallow water equations, which is a typical model that uses
stencil operations to solve partial differential equations. The
application is written in higher-level code using the GGDML
language extensions. A single source code was used for the
different experiments on the different architectures. To make
this possible we prepared configuration files to generate code

for multi-core processors (Broadwell) and for vector engines
(NEC Aurora).

The experiments included generating codes with differ-
ent array strides/layouts and access patterns. The source
code consists of eight kernels. We ran the experiments with
different configurations changing array strides on two ar-
chitectures. Performance of the application were recorded
by the Likwid and Ftrace on Broadwell and Aurora, respec-
tively. The experimental results were theoretically discussed
to explain the measurements.
Results show the impact of generating unit stride code,

which provides twice the performance of codes with constant
short distance separating array elements, and about eight
times the performance of scattered access on the Broadwell
processors. On the Aurora vector engine, the unit stride code
achieves twice the performance of the code with constant
short distance between array elements, and four times the
performance of the code with scattered access. The use of the
GGDML language extensions allowed to productively write
scientific codes in a single source code, and the use of the
translation technique provided performance-portability to
get nearly optimal code on the two platforms. A key benefit
compared to manual code optimization is to reuse and apply
efficient patterns across multiple kernels.

6

Vectorization of Stencil Codes with GGDML WPMVP’19 , February 16, 2019, Washington, DC, USA

5.1 Future Work
To optimize generated code further, we will look into inter-
kernel optimizations across time steps of an application. We
will still use the high-level semantics of the GGDML language
extensions, but the translation technique can be extended to
automatically explore those temporal kernel merges besides
to spatial kernel merging. The complexities that arise within
such transformed loops should be analyzed with respect to
vectorization and other considerations.

Acknowledgements
This work was supported in part by the German Research
Foundation (DFG) through the Priority Programme 1648
"Software for Exascale Computing" (SPPEXA) (GZ: LU 1353/11-
1). We also thank the ’Regionales Rechenzentrum Erlan-
gen’ (RRZE) at Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU) for the access to their Broadwell nodes, and
NEC Deutschland for the access to their Aurora nodes. We
also thank Prof. John Thuburn – University of Exeter, for his
help to develop the code of the shallow water equations.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. nnnnnnn and Grant
No. mmmmmmm. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the
National Science Foundation.

References
[1] Vincenzo Casulli. 1990. Semi-implicit finite difference methods for

the two-dimensional shallow water equations. J. Comput. Phys. 86, 1
(1990), 56–74.

[2] Matthias Christen, Olaf Schenk, and Helmar Burkhart. 2011. Patus: A
code generation and autotuning framework for parallel iterative stencil
computations on modern microarchitectures. In Parallel & Distributed
Processing Symposium (IPDPS), 2011 IEEE International. IEEE, 676–687.

[3] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams,
Jonathan Carter, Leonid Oliker, David Patterson, John Shalf, and
Katherine Yelick. 2008. Stencil computation optimization and auto-
tuning on state-of-the-art multicore architectures. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, 4.

[4] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J
Ramanujam, and P Sadayappan. 2011. Data layout transformation for
stencil computations on short-vector simd architectures. In Interna-
tional Conference on Compiler Construction. Springer, 225–245.

[5] Tom Henretty, Richard Veras, Franz Franchetti, Louis-Noël Pouchet,
Jagannathan Ramanujam, and Ponnuswamy Sadayappan. 2013. A
stencil compiler for short-vector SIMD architectures. In Proceedings of
the 27th international ACM conference on International conference on
supercomputing. ACM, 13–24.

[6] Nabeeh Jumah and Julian Kunkel. 2018. Performance Portability of
Earth System Models with User-Controlled GGDML code Translation.
In High Performance Computing (Lecture Notes in Computer Science).
Springer. https://doi.org/10.1007/978-3-030-02465-950

[7] Nabeeh Jumah, Julian M Kunkel, Günther Zängl, Hisashi Yashiro,
Thomas Dubos, and Thomas Meurdesoif. 2017. GGDML: icosahedral

models language extensions. Journal of Computer Science Technology
Updates 4, 1 (2017), 1–10.

[8] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel
Williams. 2010. An auto-tuning framework for parallel multicore
stencil computations. In Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on. IEEE, 1–12.

[9] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. Likwid: A light-
weight performance-oriented tool suite for x86 multicore environ-
ments. In Parallel Processing Workshops (ICPPW), 2010 39th Interna-
tional Conference on. IEEE, 207–216.

[10] Charles Yount. 2015. Vector Folding: improving stencil performance via
multi-dimensional SIMD-vector representation. In High Performance
Computing and Communications (HPCC), 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th
International Conferen on Embedded Software and Systems (ICESS), 2015
IEEE 17th International Conference on. IEEE, 865–870.

[11] Charles Yount, Josh Tobin, Alexander Breuer, and Alejandro Duran.
2016. YASK—Yet Another Stencil Kernel: A Framework for HPC Stencil
Code-Generation and Tuning. In Domain-Specific Languages and High-
Level Frameworks for High Performance Computing (WOLFHPC), 2016
Sixth International Workshop on. IEEE, 30–39.

[12] Gerhard Zumbusch. 2012. Vectorized higher order finite difference ker-
nels. In InternationalWorkshop on Applied Parallel Computing. Springer,
343–357.

7

https://doi.org/10.1007/978-3-030-02465-9_50

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 GGDML
	3.2 Code Translation
	3.3 Matching Access to Loop Structure

	4 Evaluation
	4.1 Test Application
	4.2 Test Systems
	4.3 Multi-core Processors
	4.4 Vector Engines

	5 Summary
	5.1 Future Work

	Acknowledgments
	References

