Benchmarking Application 1/O in the Community

UH

28 Universitat Hamburg

1: Deutsches Klimarechenzentrum

Julian M. Kunkel', Olga Mordvinova®, Dennis Runz®, Michael Kuhn®, Thomas Ludwig"*
kunkel@dkrz.de

DKRZ

DEUTSCHES
KLIMARECHENZENTRUM

2: Ruprecht-Karls-Universitat Heidelberg, Department of Informatics
3: University of Hamburg, Department of Informatics

-~

Abstract

~

wide diversity in benchmarks.

provide results obtained on new architectures and systems.

Benchmarking I/O performance of a high performance computer is a tough task. Many sequential and parallel benchmarks exist, however they
differ in pattern, tested interfaces and internal behavior. Interpretation of results depends on one hand on the benchmark, on the other hand,
projection of obtained results to particular applications is complicated or hardly possible. Porting scientific applications to an architecture is
challenging, library and architecture dependencies are a burden to developers. Therefore, a few application benchmarks exist, which try to
mimic application behavior in a small core. However, writing an individual application kernel as a new benchmark for each application leads to a

We propose the benchmarking tool Parabench which allows to mimic a rich variety of application programs. Parabench interprets an easy
programming language during runtime to avoid portability or licensing problems. In addition, a future Trace-Replay mechanism will allow to
replay application traces directly on other systems by interpretation of the traces. Standardized tests of these results ease evaluation. We will
start an open community and collaborations to exchange patterns and measured results on the website. Vendors can take the patterns and

4 h

Parabench

4 R

Advantages

+ C code with MPI support, GNU General Public License

+ |/O kernels are written in Parabench Programming Language (PPL)

+ Parabench parses the kernel description and prepares execution

+ During runtime the program is interpreted and executed (see figure 1)

+ POSIX and MPI-1/O support

+ Explicit C-like file-handles and implicit (specify filenames to all calls)

+ Synchronization among processes via barriers

+ MPI file views (currently MPI array is supported)

+ Control-structures, loops and group based execution

+ Supported features: timing of commands, unified parameters, automatic
return value error checking, evaluation of results

[[

| Master Process E ! Process E
N o ! 1 Commit MPltypes ! [1 [) ‘
- —ilr Scanner J-b Parser -f-:: during parsing il} Parser J*L Scanner *-lq:— oL
Ir-r --------- z":-’r --------- -‘-J. Ir-r --------- -h --------- . -J.
: I 5 ization . I
I | yncroniz

I | Commands }> Execution f.";i during intempretation ED- Execution J*L Commands :
: Y] : Y |
., : 1 1 »# . = |
'3 :) Parallel 110 " : =1
' O Grouping I4 MPI1 /0]4.. T Communicaion {* MPI I/O]--I- Grouping T 1
s " s Sy /3,
| & ' ' |[Posix o ®
| © | Patterns POSIX1O || 1 ! Patierns | T |
b, . l r .

I I
S r—— I I Seene— ;
Finalization gy atner resulis Finalization -
csv : : during finalization : :

+ One standard I/O benchmark for most use-cases
+ Library dependencies — porting library dependencies might be tough

+ Avoid licensing issues — e.g. benchmark proprietary software in third-party
environments. Experiments with SAP BWA application proofs the concepit.

+* Small interpreter — easier to understand internal behavior
+ Automatic error checking in the benchmark

~

+ Community to exchange patterns and compare results
Example Parabench Programs

Figure 1: Parabench processing.

MPI-I/O POSIX

// define the file view (right now an array is used) define param "num" $num 1000
// level 0 == independent, contiguous I/0O

define pattern {"pattern0", 10, (100 * 1024 * 1024), 0};
// level 3 == collective, non-contiguous I/O

define pattern {"pattern3", 10, (100 * 1024 * 1024), 3};

$env = "./env-posixio-test";
$myDir = "$env/$$rank/";
$file = "$myDir/file";

time["MPI-10 test"] {
barrier("world");
time["w-IvI0"] pwrite("$env/file1-level0.dat", "pattern0");

mkdir($env);
barrier;

barrier("world");
time["w-IvI3"] pwrite("$env/file1-level3.dat", "pattern3");

print filop ++“

time["POSIX stresstest"|{
time["'mkdir"] repeat $i $num mkdir("$myDir-$i");
barrier;

barrier("world");
time["r-Ivi0"] pread("$env/file1-level0.dat",pattern0","world");

barrier("world");

ii.r.ne["write"] repeat $i $num write("$file-$i", 1024);
time["r-lvi0"] pread("$env/file1-level3.dat","pattern3",world");

Application Trace-Replay

~

An alternative to program 1I/O kernels directly is to trace application behavior i.e. communication, qualitative CPU behavior and I/O calls. Calls of
the application are recorded in the trace files and can be executed by a replay program in the same order. This enables to store application
patterns and use them as a gold standard to benchmark and optimize the environment under reproducible conditions. Also, licensing and
portability issues are unproblematic by sharing these trace files. Without time-consuming porting of an application to a new system the
application performance can be evaluated qualitatively and potential of the new system can be estimated. By versioning these trace files it is
possible to evaluate performance of an older code on the same system but different environments (e.g. system kernel, [/O subsystem,
configuration). Tracing and replaying behavior of non-deterministic applications (e.g. load balanced applications) is limited, but replaying results
In a deterministic way is an advantage to understand and optimize the environment without dealing with non-deterministic applications.

-~

Open Community (under development)

* Share patterns and traces in the community.

* Exchange and analyze results on the website.

* Compare results to other environments or sites.

* Determine the best suited site for an application —

Creator: John | Modified: Tue Mar 23 2010

before porting the application to the environment! . 12
* GUI with a similar interface for local analysis. = I l
* Obtain common application behavior to evaluate -~ -~
middleware optimizations.
* We are looking for partners! B X

dwight

*If you are interested in this project let us know.

South Pacific Weather Simulation

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse
molestie consequat, vel illum dolore eu feugiat nulla facilisis. At vero
eos et accusam et justo duo dolores et ea rebum. Stet clita kasd
gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam s ey
nonumy eirmod tempor

Figure 2: Results of a single benchmark run on one system.

*hwRir

Paraweb

south pacific

weather

Search Latest Activities

« Testrun - Run modified

« Testkemel - Kemnel modified

« ECOHAM - Ecosystem model of
the North Sea - Kemnel created

earch: hydrodynamics tag:mpi vendor=HP

« U Experiments
MPI_OM - global ocean
ch In: ~ Kemels ‘ Ul
« o Kemnels circulation model - Keme

Ham - Hamburg Shelf Ocean
Model - Kernel created

Sea
. Runs create
. son
Search T o
- « Default - Configuration modified

« Test2 - Configuration modified

Copy Move Results

Kernel Cloud
Hamson - Hamburg Shelf Ocean Model [Kernel]
* Refined Model for Wake-Effect in the North Sea. * South-Chinese Sea sediment model.
Tags: mpi

normal tag posix mpi
Experiment Cloud

previous - 1 - next »

r Center (DKRZ) and University of Heidelber

Figure 2: Searching for an application kernel.

-~

Summary & Conclusion

~

Starting with Parabench, a tool is available to mimic application behavior by reducing the burden to programmers to recreate a full-featured
application kernel. Application benchmarks allow to evaluate system behavior without porting the application directly. Our future plans are to
create a trace-replay tool and to establish an open community to exchange application patterns and observed behavior. Estimating application
performance before porting the application shows potential environments for the application. Vendors, middleware and operating system
developers can use these benchmarks and traces to understand and to optimize the environments towards the needs of the users.

We welcome your interest to reach the goal of providing a rich set of common scientific application benchmarks.

Please see also the BenchlT project — http://www.benchit.org/

mailto:kunkel@dkrz.de
http://www.benchit.org/

	Folie 1

