
Advantages

Example Parabench Programs

Parabench

 One standard I/O benchmark for most use-cases
 Library dependencies – porting library dependencies might be tough
 Avoid licensing issues – e.g. benchmark proprietary software in third-party

 environments. Experiments with SAP BWA application proofs the concept.
 Small interpreter – easier to understand internal behavior
 Automatic error checking in the benchmark
 Community to exchange patterns and compare results

Summary & Conclusion

Application Trace-Replay

An alternative to program I/O kernels directly is to trace application behavior i.e. communication, qualitative CPU behavior and I/O calls. Calls of
the application are recorded in the trace files and can be executed by a replay program in the same order. This enables to store application
patterns and use them as a gold standard to benchmark and optimize the environment under reproducible conditions. Also, licensing and
portability issues are unproblematic by sharing these trace files. Without time-consuming porting of an application to a new system the
application performance can be evaluated qualitatively and potential of the new system can be estimated. By versioning these trace files it is
possible to evaluate performance of an older code on the same system but different environments (e.g. system kernel, I/O subsystem,
configuration). Tracing and replaying behavior of non-deterministic applications (e.g. load balanced applications) is limited, but replaying results
in a deterministic way is an advantage to understand and optimize the environment without dealing with non-deterministic applications.

Benchmarking Application I/O in the CommunityBenchmarking Application I/O in the Community

Abstract

Benchmarking I/O performance of a high performance computer is a tough task. Many sequential and parallel benchmarks exist, however they
differ in pattern, tested interfaces and internal behavior. Interpretation of results depends on one hand on the benchmark, on the other hand,
projection of obtained results to particular applications is complicated or hardly possible. Porting scientific applications to an architecture is
challenging, library and architecture dependencies are a burden to developers. Therefore, a few application benchmarks exist, which try to
mimic application behavior in a small core. However, writing an individual application kernel as a new benchmark for each application leads to a
wide diversity in benchmarks.
We propose the benchmarking tool Parabench which allows to mimic a rich variety of application programs. Parabench interprets an easy
programming language during runtime to avoid portability or licensing problems. In addition, a future Trace-Replay mechanism will allow to
replay application traces directly on other systems by interpretation of the traces. Standardized tests of these results ease evaluation. We will
start an open community and collaborations to exchange patterns and measured results on the website. Vendors can take the patterns and
provide results obtained on new architectures and systems.

Starting with Parabench, a tool is available to mimic application behavior by reducing the burden to programmers to recreate a full-featured
application kernel. Application benchmarks allow to evaluate system behavior without porting the application directly. Our future plans are to
create a trace-replay tool and to establish an open community to exchange application patterns and observed behavior. Estimating application
performance before porting the application shows potential environments for the application. Vendors, middleware and operating system
developers can use these benchmarks and traces to understand and to optimize the environments towards the needs of the users.
We welcome your interest to reach the goal of providing a rich set of common scientific application benchmarks.

 C code with MPI support, GNU General Public License
 I/O kernels are written in Parabench Programming Language (PPL)
 Parabench parses the kernel description and prepares execution
 During runtime the program is interpreted and executed (see figure 1)

 POSIX and MPI-I/O support
 Explicit C-like file-handles and implicit (specify filenames to all calls)
 Synchronization among processes via barriers
 MPI file views (currently MPI array is supported)
 Control-structures, loops and group based execution
 Supported features: timing of commands, unified parameters, automatic

return value error checking, evaluation of results
// define the file view (right now an array is used)
// level 0 == independent, contiguous I/O
define pattern {"pattern0", 10, (100 * 1024 * 1024), 0};
// level 3 == collective, non-contiguous I/O
define pattern {"pattern3", 10, (100 * 1024 * 1024), 3};

time["MPI-IO test"] {
 barrier("world");
 time["w-lvl0"] pwrite("$env/file1-level0.dat", "pattern0");

 barrier("world");
 time["w-lvl3"] pwrite("$env/file1-level3.dat", "pattern3");

 barrier("world");
 time["r-lvl0"] pread("$env/file1-level0.dat",pattern0","world");

 barrier("world");
 time["r-lvl0"] pread("$env/file1-level3.dat","pattern3",world");
}

define param "num" $num 1000

$env = "./env-posixio-test";
$myDir = "$env/$$rank/";
$file = "$myDir/file";

mkdir($env);

barrier;

print „filop ++“

time["POSIX stresstest"]{
time["mkdir"] repeat $i $num mkdir("$myDir-$i");
barrier;
…
time["write"] repeat $i $num write("$file-$i", 1024);
…

}

MPI-I/O POSIX

Figure 1: Parabench processing.

Open Community (under development)

Julian M. Kunkel1, Olga Mordvinova2, Dennis Runz2, Michael Kuhn3, Thomas Ludwig1,3

kunkel@dkrz.de

1: Deutsches Klimarechenzentrum
2: Ruprecht-Karls-Universität Heidelberg, Department of Informatics

3: University of Hamburg, Department of Informatics

Please see also the BenchIT project – http://www.benchit.org/

Share patterns and traces in the community.
Exchange and analyze results on the website.
Compare results to other environments or sites.
Determine the best suited site for an application –
before porting the application to the environment!
GUI with a similar interface for local analysis.
Obtain common application behavior to evaluate
middleware optimizations.

We are looking for partners!
If you are interested in this project let us know.

Figure 2: Results of a single benchmark run on one system. Figure 2: Searching for an application kernel.

mailto:kunkel@dkrz.de
http://www.benchit.org/

	Folie 1

