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Abstract. One goal of support staff at a data center is to identify in-
efficient jobs and to improve their efficiency. Therefore, a data center
deploys monitoring systems that capture the behavior of the executed
jobs. While it is easy to utilize statistics to rank jobs based on the uti-
lization of computing, storage, and network, it is tricky to find patterns
in 100,000 jobs, i.e., is there a class of jobs that aren’t performing well.
Similarly, when support staff investigates a specific job in detail, e.g., be-
cause it is inefficient or highly efficient, it is relevant to identify related
jobs to such a blueprint. This allows staff to understand the usage of the
exhibited behavior better and to assess the optimization potential.

In this article, our goal is to identify jobs similar to an arbitrary refer-
ence job. In particular, we sketch a methodology that utilizes temporal
I/0 similarity to identify jobs related to the reference job. Practically,
we apply several previously developed time series algorithms. A study is
conducted to explore the effectiveness of the approach by investigating
related jobs for a reference job. The data stem from DKRZ’s super-
computer Mistral and include more than 500,000 jobs that have been
executed for more than 6 months of operation. Our analysis shows that
the strategy and algorithms bear the potential to identify similar jobs,
but more testing is necessary.

1 Introduction

Supercomputers execute 1000s of jobs every day. Support staff at a data cen-
ter have two goals. Firstly, they provide a service to users to enable them the
convenient execution of their applications. Secondly, they aim to improve the
efficiency of all workflows — represented as batch jobs — in order to allow the
data center to serve more workloads.

In order to optimize a single job, its behavior and resource utilization must
be monitored and then assessed. Rarely, users will liaise with staff and request a
performance analysis and optimization explicitly. Therefore, data centers deploy
monitoring systems and staff must pro-actively identify candidates for optimiza-
tion. Monitoring and analysis tools such as TACC Stats [7], Grafana [4], and
XDMod [16] provide various statistics and time-series data for job execution.
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The support staff should focus on workloads for which optimization is bene-
ficial, for instance, the analysis of a job that is executed once on 20 nodes may
not be a good return of investment. By ranking jobs based on their utilization,
it is easy to find a job that exhibits extensive usage of computing, network,
and I/O resources. However, would it be beneficial to investigate this workload
in detail and potentially optimize it? For instance, a pattern that is observed
in many jobs bears potential as the blueprint for optimizing one job may be
applied to other jobs as well. This is particularly true when running one appli-
cation with similar inputs, but also different applications may lead to similar
behavior. Knowing details about a problematic or interesting job may be trans-
ferred to similar jobs. Therefore, it is useful for support staff (or a user) that
investigates a resource-hungry job to identify similar jobs that are executed on
the supercomputer.

It is non-trivial to identify jobs with similar behavior from the pool of exe-
cuted jobs. Re-executing the same job will lead to slightly different behavior, a
program may be executed with different inputs or using a different configuration
(e.g., number of nodes). Job names are defined by users; while a similar name
may hint to be a similar workload, finding other applications with the same I/0O
behavior would not be possible.

In the paper [2], we developed several distance measures and algorithms
for the clustering of jobs based on the time series and their I/O behavior. These
distance measures can be applied to jobs with different runtimes and the number
of nodes utilized, but differ in the way they define similarity. They showed that
the metrics can be used to cluster jobs, however, it remained unclear if the
method can be used by data center staff to explore similar jobs effectively. In
this paper, we refine these algorithms slightly, include another algorithm, and
apply them to rank jobs based on their temporal similarity to a reference job.

We start by introducing related work in Section 2. In Section 3, we describe
briefly the data reduction and the algorithms for similarity analysis. Then, we
perform our study by applying the methodology to a reference job, therewith,
providing an indicator for the effectiveness of the approach to identify similar
jobs. In Section 5, the reference job is introduced and quantitative analysis of
the job pool is made based on job similarity. In Section 6, the 100 most similar
jobs are investigated in more detail, and selected timelines are presented. The
paper is concluded in Section 7.

2 Related Work

Related work can be classified into distance measures, analysis of HPC applica-
tion performance, inter-comparison of jobs in HPC, and I/O-specific tools.

The ranking of similar jobs performed in this article is related to clustering
strategies. Levenshtein (Edit) distance is a widely used distance metric indicating
the number of edits needed to convert one string to another [14]. The comparison
of the time series using various metrics has been extensively investigated. In [9],
an empirical comparison of distance measures for the clustering of multivariate
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time series is performed. 14 similarity measures are applied to 23 data sets. It
shows that no similarity measure produces statistically significant better results
than another. However, the Swale scoring model [13] produced the most disjoint
clusters.

The performance of applications can be analyzed using one of many tracing
tools such as Vampir [18] that record the behavior of an application explicitly
or implicitly by collecting information about the resource usage with a moni-
toring system. Monitoring systems that record statistics about hardware usage
are widely deployed in data centers to record system utilization by applications.
There are various tools for analyzing the I/O behavior of an application [10].

For Vampir, a popular tool for trace file analysis, in [18] the Comparison
View is introduced that allows them to manually compare traces of application
runs, e.g., to compare optimized with original code. Vampir generally supports
the clustering of process timelines of a single job, allowing to focus on relevant
code sections and processes when investigating many processes.

In [8], 11 performance metrics including CPU and network are utilized for
agglomerative clustering of jobs, showing the general effectiveness of the ap-
proach. In [15], a characterization of the NERSC workload is performed based
on job scheduler information (profiles). Profiles that include the MPI activities
have shown effective to identify the code that is executed [5]. Many approaches
for clustering applications operate on profiles for compute, network, and I/0
[6, 11, 1]. For example, Evalix [6] monitors system statistics (from proc) in 1-
minute intervals but for the analysis, they are converted to a profile removing
the time dimension, i.e., compute the average CPU, memory, and I/O over the
job runtime.

PAS2P [12] extracts the I/O patterns from application traces and then allows
users to manually compare them. In [19], a heuristic classifier is developed that
analyzes the I/O read/write throughput time series to extract the periodicity of
the jobs — similar to Fourier analysis. The LASSIi tool [17] periodically monitors
Lustre I/O statistics and computes a "risk” factor to identify I/O patterns that
stress the file system. In contrast to existing work, our approach allows a user
to identify similar activities based on the temporal I/O behavior recorded by a
data center-wide deployed monitoring system.

3 Methodology

The purpose of the methodology is to allow users and support staff to explore
all executed jobs on a supercomputer in order of their similarity to the reference
job. Therefore, we first need to define how a job’s data is represented, then
describe the algorithms used to compute the similarity, and, the methodology
to investigate jobs.

3.1 Job Data

On the Mistral supercomputer at DKRZ, the monitoring system [3] gathers in
ten seconds intervals on all nodes nine I/O metrics for the two Lustre file systems
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together with general job metadata from the SLURM workload manager. The
results are 4D data (time, nodes, metrics, file system) per job. The distance mea-
sures should handle jobs of different lengths and node count. In the open-access
article [2], we discussed a variety of options from 1D job-profiles to data reduc-
tions to compare time series data and the general workflow and pre-processing
in detail. We will be using this representation. In a nutshell, for each job ex-
ecuted on Mistral, they partitioned it into 10 minutes segments® and compute
the arithmetic mean of each metric, categorize the value into NonIO (0), HighIO
(1), and CriticallO (4) for values below 99-percentile, up to 99.9-percentile, and
above, respectively. The values are chosen to be 0, 1, and 4 because we arith-
metically derive metrics: naturally, the value of 0 will indicate that no I/O issue
appears; we weight critical I/O to be 4x as important as high I/O. This strategy
ensures that the same approach can be applied to other HPC systems regardless
of the actual distribution of these statistics on that data center. After the mean
value across nodes is computed for a segment, the resulting numeric value is en-
coded either using binary (I/O activity on the segment: yes/no) or hexadecimal
representation (quantizing the numerical performance value into 0-15) which is
then ready for similarity analysis. By pre-filtering jobs with no I/O activity —
their sum across all dimensions and time series is equal to zero — the dataset is
reduced from 1 million jobs to about 580k jobs.

3.2 Algorithms for Computing Similarity

We reuse the B and Q algorithms developed in [2]: B-all, B-aggz(eros), Q-native,
Q-lev, and Q-phases. They differ in the way data similarity is defined; either the
time series is encoded in binary or hexadecimal quantization, the distance mea-
sure is the Euclidean distance or the Levenshtein distance. B-all determines the
similarity between binary codings by means of Levenshtein distance. B-aggz is
similar to B-all, but computes similarity on binary codings where subsequent
segments of zero activities are replaced by just one zero. Q-lev determines the
similarity between quantized codings by using Levenshtein distance. Q-native
uses a performance-aware similarity function, i.e., the distance between two jobs
for a metric is [ert="eb2l - Ope of our basic considerations is that a short job
may run longer, e.g, when restarted with a larger input file (it can stretch the
length of the I/O and compute phases) or when run with more simulating steps.
There are more alternatives how a longer job is related to a shorter job but we
do not consider them for now. In this article, we consider these different be-
havioral patterns and attempt to identify situations where the I/O pattern of a
long job is contained in a shorter job. Therefore, for jobs with different lengths,
a sliding-windows approach is applied which finds the location for the shorter
job in the long job with the highest similarity. Q-phases extracts phase informa-
tion and performs a phase-aware and performance-aware similarity computation.

3 We found in preliminary experiments that 10 minutes reduces compute time and
noise, i.e., the variation of the statistics when re-running the same job.
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The Q-phases algorithm extracts I/O phases from our 10-minute segments and
computes the similarity between the most similar I/O phases of both jobs.

3.3 Methodology
Our strategy for localizing similar jobs works as follows:

— A user? provides a reference job ID and selects a similarity algorithm.

— The system iterates over all jobs of the job pool, computing the similarity

to the reference job using the specified algorithm.

It sorts the jobs based on the similarity to the reference job.

— It visualizes the cumulative job similarity allowing the user to understand
how job similarity is distributed.

— The user starts the inspection by looking at the most similar jobs first.

The user can decide about the criterion when to stop inspecting jobs; based on
the similarity, the number of investigated jobs, or the distribution of the job
similarity. For the latter, it is interesting to investigate clusters of similar jobs,
e.g., if there are many jobs between 80-90% similarity but few between 70-80%.

For the inspection of the jobs, a user may explore the job metadata, search
for similarities, and explore the time series of a job’s I/O metrics.

4 Reference Job

For this study, we chose the reference job called Job-M: a typical MPI parallel
8-hour compute job on 128 nodes that write time series data after some spin
up. The segmented timelines of the job are visualized in Figure 1 — remember
that the mean value is computed across all nodes on which the job ran. This
coding is also used for the Q algorithms, thus this representation is what the
algorithms will analyze; B algorithms merge all timelines together as described
in [2]. The figures show the values of active metrics (# 0); if few are active, then
they are shown in one timeline, otherwise, they are rendered individually to
provide a better overview. For example, we can see that several metrics increase
in Segment 12. We can also see an interesting result of our categorized coding,
the write_bytes are bigger than 0 while write_calls are 0°.

5 Evaluation

In the following, we assume the reference job (Job-M) is given, and we aim to
identify similar jobs. For the reference job and each algorithm, we created CSV
files with the computed similarity to all other jobs from our job pool (worth 203
days of production of Mistral). During this process, the runtime of the algorithm

4 This can be support staff or a data center user that was executing the job.
5 The reason is that a few write calls transfer many bytes; less than our 90%-quantile,
therefore, write calls will be set to 0.
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Fig. 1: Segmented timelines of Job-M (runtime=28,828 s, segments=48)

is recorded. Then we inspect the correlation between the similarity and number
of found jobs. Finally, the quantitative behavior of the 100 most similar jobs is
investigated.

5.1 Performance

To measure the performance for computing the similarity to the reference job, the
algorithms are executed 10 times on a compute node at DKRZ which is equipped
with two Intel Xeon E5-2680v3 @2.50GHz and 64GB DDR4 RAM. A boxplot for
the runtimes is shown in Figure 2a. The runtime is normalized for 100k jobs, i.e.,
for B-all it takes about 41s to process 100k jobs out of the 500k total jobs that
this algorithm will process. Generally, the B algorithms are the fastest, while the
Q algorithms often take 4-5x as long. Q_phases and Levenshtein-based algorithms
are significantly slower. Note that the current algorithms are sequential and
executed on just one core. They could easily be parallelized, which would then
allow an online analysis.

5.2 Quantitative Analysis

In the quantitative analysis, we explore the different algorithms how the similar-
ity of our pool of jobs behaves to our reference job. The support team in a data
center may have time to investigate the most similar jobs. Time for the analysis
is typically bound, for instance, the team may analyze the 100 most similar jobs
and rank them; we refer to them as the Top 100 jobs, and Ranki refers to the
job that has the i-th highest similarity to the reference job — sometimes these
values can be rather close together as we see in the histogram in Figure 3 for the
actual number of jobs with a given similarity. As we focus on a feasible number
of jobs, we crop it at 100 jobs (the total number of jobs is still given). It turns
out that both B algorithms produce nearly identical histograms, and we omit
one of them. In the figures, we can see again a different behavior of the algo-
rithms depending on the reference job. We can see a cluster with jobs of higher
similarity (for B-all and Q-native at a similarity of 75%). Generally, the growth
in the relevant section is more steady. Practically, the support team would start
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with Rank 1 (most similar job, e.g., the reference job) and walk down until the
jobs look different, or until a cluster of jobs with close similarity is analyzed.

Inclusivity and Specificity When analyzing the overall population of jobs
executed on a system, we expect that some workloads are executed several times
(with different inputs but with the same configuration) or are executed with
slightly different configurations (e.g., node counts, timesteps). Thus, potentially
our similarity analysis of the job population may just identify the re-execution of
the same workload. Typically, the support staff would identify the re-execution
of jobs by inspecting job names, which are user-defined generic strings.

To understand if the analysis is inclusive and identifies different applications,
we use two approaches with our Top 100 jobs: We explore the distribution of
users (and groups), runtime, and node count across jobs. The algorithms should
include different users, node counts, and across runtime. To confirm the hy-
potheses presented, we analyzed the job metadata comparing job names which
validate our quantitative results discussed in the following.

User distribution. To understand how the Top 100 are distributed across users,
the data is grouped by user ID and counted. Figure 2b shows the stacked user
information, where the lowest stack is the user with the most jobs and the
topmost user in the stack has the smallest number of jobs. Jobs from 13 users
are included; about 25% of jobs stem from the same user; Q-lev and Q-native
include more users (29, 33, and 37, respectively) than the other three algorithms.
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Fig. 3: Histogram for the number of jobs (bin width: 2.5%, numbers are the
actual job counts). B-aggz is nearly identical to B-all and therefore omitted.

We didn’t include the group analysis in the figure as user count and group ID
are proportional, at most the number of users is 2x the number of groups. Thus,
a user is likely from the same group and the number of groups is similar to the
number of unique users.

Node distribution. Figure 4a shows a boxplot for the node counts in the Top 100
— the red line marks the reference job. All algorithms reduce over the node
dimensions, therefore, we naturally expect a big inclusion across the node range
as long as the average I/O behavior of the jobs is similar. We can observe that
the range of nodes for similar jobs is between 1 and 128.

Runtime distribution. The job runtime of the Top 100 jobs is shown using box-
plots in Figure 4b. While all algorithms can compute the similarity between
jobs of different lengths, the B algorithms and Q-native penalize jobs of different
lengths, preferring jobs of very similar lengths. Q-phases is able to identify much
shorter or longer jobs.

6 Assessing Timelines for Similar Jobs

To verify the suitability of the similarity metrics, for each algorithm, we carefully
investigated the timelines of each of the jobs in the Top 100. We subjectively
found that the approach works very well and identifies suitable similar jobs. To
demonstrate this, we include a selection of job timelines and selected interesting
job profiles. Inspecting the Top 100 is highlighting the differences between the
algorithms. All algorithms identify a diverse range of job names for this reference
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Fig. 5: Job-M with Bin-Aggzero, selection of similar jobs

job in the Top 100. The number of unique names is 19, 38, 49, and 51 for B-
aggzero, Q-phases, Q-native, and Q-lev, respectively.

When inspecting their timelines, the jobs that are similar according to the B
algorithms (see Figure 5) subjectively appear to us to be different. The reason
lies in the definition of the B-* similarity, which aggregates all I/O statistics into
one timeline. The other algorithms like Q-lev (Figure 6) and Q-native (Figure 7)
seem to work as intended: While jobs exhibit short bursts of other active metrics
even for low similarity, we can eyeball a relevant similarity particularly for Rank 2
and Rank 3 which have the high similarity of 90+%. For Rank 15 to Rank 100,
with around 70% similarity, a partial match of the metrics is still given.
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Fig. 6: Job-M with Q-lev, selection of similar jobs

7 Conclusion

We introduced a methodology to identify similar jobs based on timelines of nine
I/0O statistics. The quantitative analysis shows that a diverse set of results can
be found and that only a tiny subset of the 500k jobs is very similar to our
reference job representing a typical HPC activity. The Q-lev and Q-native work
best according to our subjective qualitative analysis. Related jobs stem from the
same user/group and may have a related job name, but the approach was able
to find other jobs as well. This was the first exploration of this methodology. In
the future, we will expand the study by comparing more jobs in order to identify
the suitability of the methodology.
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