
Noname manuscript No.
(will be inserted by the editor)

Towards I/O Analysis of HPC Systems
and a Generic Architecture to Collect Access Patterns

Marc C. Wiedemann1 · Julian M. Kunkel1 · Michaela Zimmer1 ·
Thomas Ludwig1 · Michael Resch2 · Thomas Bönisch2 · Xuan Wang2 ·
Andriy Chut2 · Alvaro Aguilera3 · Wolfgang E. Nagel3

Michael Kluge3 · Holger Mickler3

Received: / Accepted:

Abstract In high-performance computing (HPC) ap-

plications, a high-level I/O call will trigger activities on

a multitude of hardware components such as massively

parallel systems supported by huge storage systems and

internal software layers. Currently, their complex inter-

play makes it impossible to identify the causes for and

the locations of I/O bottlenecks. Existing tools indicate

the bottleneck but provide little guidance to identify the

cause and how to improve the situation.

Our project Scalable I/O for Extreme Performance

was initiated to find solutions for this problem.

To achieve this goal in SIOX, we will build a system to

record access information on all layers and components,

recognize access patterns, and characterize the I/O sys-

tem. Ultimately, it will localize the reasons for I/O bot-

tlenecks and propose optimizations for the I/O middle-

ware that improve I/O performance, such as through-

We want to express our gratitude to the ”Deutsches Zentrum
für Luft- und Raumfahrt e.V.“ as responsible project agency
and to the ”Bundesministerium für Bildung und Forschung“
for the financial support under grant 01 IH 11008 A-C.

Marc C. Wiedemann1

E-mail: marc.wiedemann@informatik.uni-hamburg.de
Bundesstraße 45a - 20146 Hamburg
Julian M. Kunkel1 - Michaela Zimmer1

Prof. Dr. Thomas Ludwig1

1 Universität Hamburg - Deutsches Klimarechenzentrum
GmbH

Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Michael Resch2

Dr.-Ing. Thomas Bönisch2

Xuan Wang2 - Andriy Chut2
2 High Performance Computing Center Stuttgart (HLRS)
Universität Stuttgart

Alvaro Aguilera3 - Prof. Dr. Wolfgang E. Nagel3

Dr.-Ing. Michael Kluge3 - Holger Mickler3
3 Technische Universität Dresden
Zentrum für Informationsdienste und Hochleistungsrechnen

put rate and latency. Furthermore, the SIOX system

will support decision making while planning new I/O

systems.

In this paper, we introduce the SIOX system and

present its current status: the intended approach to col-

lect the required access information, an architectural

concept, methods to reconstruct the I/O path and an

excerpt of the interface for data collection. The focus

lies on the architecture, which collects and combines the

relevant access information along the I/O path, and the

efficient transfer of this information. An abstract mod-

elling approach allows us to reduce the complexity of

the I/O activities on parallel computing systems, while

an abstract interface allows us to adapt the SIOX sys-

tem to various HPC file systems.

Keywords I/O analysis · I/O path · Causality tree

1 Introduction

This paper is structured as follows: Chapter 1 states the

scientific problem and a possible way to solve it with

the SIOX approach. Chapter 2 gives an overview of the

I/O software and parallel file systems (PFS ) used in

HPC. We propose a solution to the problem and show

the locations of information extraction in Chapter 3.

Chapter 4 presents the architecture, the SIOX system’s

general workflow with the cause-and-effect chain, gen-

eral communication between the components and the

fine structure of activity data collection from clients.

Chapter 5 shows how the SIOX system is going to be

implemented. A SIOX interface is shown as an excerpt.

In Chapter 6, we are reconstructing the causal I/O path

through functional nodes by using a graphical model.

In Chapter 7, we innovate a combination graph of the

The final publication is available at Springer via http://dx.doi.org/10.1007/s00450-012-0221-5
1/9



2 Marc C. Wiedemann1 et al.

Fig. 1 An example of the two distinct types of causal connec-
tions on the I/O path: Vertically, there are the send/receive
communications, while horizontally, there are the mappings,
e. g. translations from file names to file handles. Access pat-
terns with layer-wise interactions are initiated through the
open()-call of a client process, possibly leading to activities
that cannot be unambiguously attributed to one single cause.

causally dependent PFS activities, linking the applica-

tion processes to the I/O nodes involved in these ac-

tivities. Chapter 8 consolidates the main aspects of our

scientific findings within the project.

One of the most pressing problems in HPC systems

is the I/O bottleneck: the performance of individual

storage units does not grow at the same rate as CPUs.

To mitigate this problem, the PFSs vertically scale to

many individual components. This increasing complex-

ity and the anonymous storage of blocks of bytes with-

out any relation to user application software exacer-

bates the analysis and identification of system bottle-

necks in I/O transactions. Due to contradictory require-

ments of different user groups, the global optimization

of a PFS is a complex task, while the application related

optimization takes place as a long communication pro-

cess between the users and the system custodian.

It is difficult to know whether a once recognized I/O

pattern of an application leads to a basis for the inter-

pretation of diagnosed performance problems. In [4], it

is stated that performance tools often detect symptoms

of performance problems rather than causes. Especially

in PFSs, the symptoms may appear much later than the

causing events, and might be located on another phys-

ical node. The I/O bottleneck may not be identified in

timelines because of caching. This makes the attribu-

tion of dependent calls and their actions difficult.

Time-shared accesses to one specific file further adds

to the difficulty of I/O analysis.

An example of the complex association of activities

on the data path, is shown in figure 1. Along the verti-

cal axis, send/receive communications are transmitted

through the software/hardware layers, while along the

time axis, function calls are connected via the use of

identical or derived descriptors, such as file name or file

handle. As a consequence, causal attribution of activi-

ties may well be ambiguous.

2 State of the Art

The toolchain Magpie [11] accurately attributes the ac-

tual usage of CPU, disk, and network to the appropriate

request by correlating the events that were generated

on live requests using a schema of the event relation-

ships. Magpie’s approach relies on high precision time

stamps. It is generic and flexible, because the parser

can look at any attribute when performing a join for

the causal chain of a request.

Stardust [14] introduced activity tracking of per-

client, per-request, as well as per-workload latency maps

information in a Storage Area Network system (SAN)

by keeping all traces. The system incorporates the full

distribution of access locations, direct end-to-end trac-

ing and online monitoring of a specific SAN system,

where the types of requests have to be known in ad-

vance. Resources of interest in that SAN include the

CPUs, cache-levels, network layout and storage devices.

In shared environments, however, the aggregate perfor-

mance counters do not differentiate between process-

loads and present only combined workload measure-

ments [14]. In contrast, SIOX aims to analyse I/O re-

quests in all HPC systems.

Annotated Plan Graphs (APG) [1] differentiate between

inner, direct, and outer dependencies indirectly influ-
encing the performance of a database operator on the

inner path through components. Each APG graph com-

ponent is annotated with appropriate monitoring data

collected during the database plan’s execution. Vari-

ous data are collected within the limits of the SAN,

among them: the physical and logical configuration of

components, changes in configuration and connectivity

in time, performance metrics, system-generated events

(disk failure, RAID rebuild) and user-defined triggers

(e. g. degradation in volume performance, high work-

load on SAN).

The causal relation between parent and child pro-

cesses, and the system activity can be examined with

a trace visualization tool (e. g. [15, Sunshot]). Other

trace environments are TAU [12], Vampir [6], and

Scalasca [3]. None of them trace MPI and a parallel

FS together. Score-P1 aims to be a successor of these

trace environments using OTF2 which will become a

1 www.vi-hps.org/projects/score-p

2/9



Towards I/O Analysis of HPC Systems and a Generic Architecture to Collect Access Patterns 3

standard in TAU, Vampir and Scalasca. The maximum

number of trace files that can be monitored in this

2D-environment depends on the screen’s pixel-size, to-

tal dimensions and multiplicity. The tracing API HD-

Trace [8] allows the connection to modified PFSs such

as GPFS, Lustre and PVFS2.

The Adaptive I/O System (ADIOS) [9], a scalable,

portable and efficient component of the I/O system on

different platforms, provides all users with the means to

choose their optimal I/O transport methods based on

their I/O patterns. It utilizes XML for its configuration

file to define or control the I/O access behaviours. A

file format, BP, introduced by ADIOS, plays the role of

an intermediate format and can be easily converted to

HDF5 or other file formats.

One of today’s most popular implementations of

MPI I/O is ROMIO [13], which runs on various ma-

chines and is included in several MPI implementations.

The two I/O optimization techniques implemented by

ROMIO are data sieving and two-phase I/O. The for-

mer one improves the performance of accessing non-

contiguous regions of data, while the latter one handles

the collective I/O operations.

Comparing to ROMIO, OMPIO [2], a new paral-

lel I/O architecture for Open MPI, takes advantage of

different frameworks to provide more finely separated

I/O operations. The fine grained frameworks increase

the modularization of the parallel I/O library and uti-

lize various algorithms such as two-phase I/O to adapt

to the different parallel I/O operations. Special focus

is set on MPI I/O, where we provide I/O hints to the

MPI library to make future improvements possible.

These state of the art approaches are as diverse as

the systems to analyse. In SIOX, we present an ap-

proach to instrument all these systems.

3 SIOX: Scalable I/O for Extreme Performance

The SIOX project is organized as a collaboration of

the university partners named at the beginning, DKRZ

GmbH and IBM AG, and aims to identify any user’s

application program and the I/O bottleneck related to

it. To this end, we construct an open source system

for tracking and relating system activities on all ab-

straction layers, to extract their causal relations and to

reconstruct access patterns for automatic optimization

proposals. Furthermore, SIOX aims to provide tracking

information about the internal behaviour of the differ-

ent MPI I/O implementations. The integrated analysis

of application, PFS and HPC hardware is a basis for

optimization in other scenarios. For instance, the com-

puting center may identify unfavourable access patterns

and suboptimal applications.

Fig. 2 Information extraction on four software layers and at
two hardware locations (server and I/O nodes).

Communications and mappings will be monitored

through the SIOX system to collect associations be-

tween system activities and to reconstruct the causal

tree of connected activities. Synchronized timing of soft-

ware and hardware clocks is a key requirement for all

I/O analysis. It must be assured that at any point where

data is captured, a synchronized time source is used by

the system. The necessary accuracy has yet to be deter-

mined, but synchronization based on the network time

protocol is expected to be sufficient.

Automatic analysis of access patterns will help to

estimate the efficiency of the patterns observed. With

this objective, the individual layers of a PFS, which per-

form transformations while processing I/O calls, ought

to be analytically described. Based on knowledge about

the identified access patterns, the SIOX system aims to

propose possible application-oriented performance op-

timizations.

For I/O analysis, the utilization profiles are to be

continually written to memory. For fast analysis of un-

expected problems and planning of HPC system invest-

ments, multiple parameters of the HPC system and the

current I/O patterns need to be stored. The provision-

ing of information about different I/O patterns allows

to continually improve HPC systems.

Parallel to development, first components will be

tested with real-world applications. Applications of the

DKRZ, for instance, will be optimized by the SIOX sys-

tem during the second half of the project’s time frame.

3/9



4 Marc C. Wiedemann1 et al.

Fig. 3 Architecture for the development of the SIOX system.

figure 2 shows from which locations in hardware

and software layers data is to be extracted via the SIOX

interface. In particular, these include parallel applica-

tions, the HDF5 interface, the PFS involved (GPFS,

Lustre, etc.), the server nodes, and the SAN system

(HPSS, RAIDs with dedicated storage nodes, etc.). We

aim to collect, compress and permanently store access

information on all relevant layers.

Translations are a key element to relate observed ac-

tivity with operations on the call sequence, because the

reference, on which an operation is performed, usually

changes.

The access information can be stored on each layer,

including a reference to the object it operates on. If the

mappings on all translation nodes are recorded, a causal

relationship can be inferred, e. g. whenever access to a

file caused activity on a device. If multiple clients ac-

cess the same file (and offset), a global unique identifier

is necessary to record which client caused a particular

activity on a device.

4 Architecture

The conceptual architecture to develop the SIOX sys-

tem is depicted in figure 3. The design allows for the

system to propose optimization calls at runtime using

an automatic, iterative improvement procedure.

The architecture consists of five main software con-

struction parts: the I/O strategy for the clients, the dae-

mons, the transaction system, the data warehouse, and

the knowledge base. The knowledge base contains the

knowledge about aggregated information of the data

warehouse, the hardware topology (i. e. network con-

nections) and characteristics, and the parameters for

optimization (e. g. “Observed I/O throughput drop for

packets smaller than 4 MiBs, therefore aggregation of

smaller packets to 4 MiB packets is proposed by the

SIOX system”).

The databases are differentiated into OLTP data

transaction and OLAP data analysis. The data ware-

house uses the extract-transform-load (ETL) process,

working in parallel cluster mode (not a single disk or

RAM is used by all associated nodes, data is only ex-

changed over the network, every node adds data storage

and I/O bandwidth).

The interoperation of all architectural parts will re-

sult in an automatically improving system through qual-

ity inspection, analysis and expertise optimizations.

4.1 Definitions

In order to foster a common understanding of the SIOX

system, we introduce the following general terms and

identifiers (ID) for active SIOX developers.

Nodes are functional logical units in a parallel com-

puting system consisting of hardware components and

software-layers. The SIOX system refers to every node

by a unique node ID UNID, made up of a hardware ID

(HWID), software ID (SWID), and optionally a unique

instance ID (IID) on the same HWID and SWID.

Edges are logical pathways from one node to another

forming the logical connection network, see Chapter 6.

A component is a real hardware or software unit

consisting of at least one node.

An activity is an intended act in the progression of

the data flow. Activities physically take place on com-

ponents and logically on nodes. Activities can cause

cascading I/O activities.

4/9



Towards I/O Analysis of HPC Systems and a Generic Architecture to Collect Access Patterns 5

Fig. 5 Subsystem communication between client and daemons with double buffering, saved intermediate states, and collection
of SQL querys. A server daemon creates daemons for client processes to collect client information.

Fig. 4 Fine structure of the interaction between a client,
the hidden processes (daemons) and the transaction system.
The interaction is modularly organized using either network
socket communication or shared memory .

The activity identifier (AID) is used to attribute the

performance data nodes report at the beginning and at

the end of an activity.

Descriptors are various designators, which are de-

fined for the identification of entities or activities in

nodes and along edges.

4.2 Fine Structure

The SIOX daemon system functions as a client-server

interface (see figure 4). In this fine structure, SIOX

control organizes the low-level communication interface

and the client-server interface.

In a HPC system, many operations take place con-

currently, producing fine-grained data, measured at a

large number of I/O locations. Therefore, we need local

preprocessing to reduce the volume of collected data.

It will be critical to implement a step-by-step aggrega-

tion process based on the hardware units, core, node,

subsystem (maybe nodes in one rack), and total HPC

system available to the particular program. The client-

server interface will be implemented as a daemon that

correlates node connections, reduces redundancies, ag-

gregates the results and sends them to the data collec-

tion center (see figure 5).

The interaction of the daemon modules is shown

in figure 5. Daemons are created for each client by a

server daemon. After creation, they serve as the inter-

face between clients and the data collection via SQL

over socket communication. All data storage is gener-

ally layer-independent.

4.3 Compression Design

The SIOX system workflow requires the online trans-

mission, analysis and storage of I/O events produced by

the HPC applications. To ensure scalability, it is neces-

sary to reduce the amount of data being transmitted to,

and handled by the SIOX system. This can be aided by

the use of different compression methods at key parts of

the workflow: There is a great compression potential in

the I/O traces generated by SPMD applications since

they generally have a similar content. The knowledge

base could be stored using a compressed searchable for-

mat to save storage space, optimize queries, and ease

management. In order to reduce the network load dur-

ing I/O peaks, the transmission of trace data could op-

tionally be compressed using a light-weight compression

method without adding much latency to the communi-

cation. Finally, it could be advantageous to use com-

pressed data structures for the data analysis to speed

up the pattern search and reduce the SIOX system’s

main memory footprint.

4.4 Causal Tree and I/O Path Model

Focusing on functionalities rather than on the compo-

nents they are hosted on, is one way to simplify the

software-hardware-interaction in order to gain a clear

system overview. On the one hand, the type of col-

lected data varies from component to component, on

the other, the interrelations between entities in the con-

text of internal data transactions are difficult to visual-

ize. To solve this problem, we employ the structuring in

5/9



6 Marc C. Wiedemann1 et al.

form of basic functionalities according to the I/O path

model [5]. Thus, focussing on abstract functionalities

allow us to cover the diversity of HPC systems.

5 Realization

Information is collected from different layers and dif-

ferent components of the PFS. For example, in case

of GPFS, information can be retrieved from the PFS

client and Network Shared Disk (NSD) client compo-

nent, which is a software layer providing a virtual view

of the underlying disks. From the client, we collect in-

formation on a per I/O call basis. Furthermore, infor-

mation from the NSD server layer on accessing storage

devices is gathered. The data warehouse can be a RAM-

centralized table system which scales with the number

of I/O nodes and should store vector-oriented columns

in parallel files to reduce response time. Furthermore,

it should be compatible with the enterprise transaction

system database (i. e. PostgreSQL).

5.1 SIOX System Interfaces

In the SIOX system, standardized C interfaces allow

us to map all available HPC file systems. One covers

the functions for registering, assigning and unregister-

ing nodes, edges and descriptor mappings, well as de-

scriptor creation, transfer, mapping and release. The

identifiers are issued by the SIOX system when the

nodes are initialized via

SIOX_register_node()

or released when they sign off. In contrast, edges are

formed when connections are registered with

SIOX_register_edge()

between parent nodes and child nodes. The reporting of

nodes’ attributes delivers information on capacity and

other component capabilities. Activities have a starting

point, an endpoint and attributes that can be reported

via timestamps.

5.2 Compression Techniques

For the technical realization of Chapter 4.3, it would

be necessary to adapt one of the existing MPI trace

compression techniques such as ScalaTrace [10] or com-

pressed Complete Call Graphs (cCCG) [7] to work on

the fly and with a SIOX-specific trace format. The com-

pression of the knowledge base will depend on the ca-

pabilities of the storage solution of choice. As for the

compression of the network communications, it can be

accomplished using well-known LZ-libraries like snappy,

lzop, quicklz, etc. and a combination of small dictio-

nary sizes and time-out triggered buffering. Last but

not least, the memory structures used in the SIOX sys-

tem’s learning cycle could be based on cCCGs or devel-

oped ad-hoc exploiting the previous compression.

5.3 Tracking the Cause-and-Effect chain

There are two approaches to keeping track of the cause-

and-effect chain. Either access information is transported

through software layers with metadata, or accesses are

implicitly linked together through an object reference

(or an aggregated reference of sub information). In the

first case, the interfaces of intermediate layers must be

modified to transport a unique call-ID. This may be

connected with high effort and expenses, because of

the required adaptation of the ROM-code on host bus

adapters (HBA), and because communication protocols

such as iSCSI or proprietary layers have to be adapted

out of their standard. In the second case, the recon-

struction of the causal relations is possible because it

is known that access on the upper call activity pre-

cedes activity on the ones below. However, write-behind

caches defer activity – and therefore make the temporal

correlation harder, but other components trigger im-

mediate action on the connected components. Caches

may aggregate operations from multiple clients into one

large request, therefore the detailed knowledge offered

by the unique call ID might be unnecessary for many

use-cases. Read-ahead is also problematic, a read oper-

ation might trigger further activity, but the later usage
of this cached data might be caused by another client.

Taking advantage of the I/O path model, we have

decided to use the implicit approach. By utilizing the

causal path view of generic calls (e. g. open, close, write,

read), we will construct a dependency graph of the

whole I/O system touched by the SIOX system and

continuously update it with the information collected.

6 Reconstructing the I/O Path from Activities

In the SIOX context, we need to assign logical entities

to functionalities and hardware to monitor the PFS’s

activity.

The first step towards this goal is the abstraction to

graphical nodes combining the I/O path model with

activity identifiers (see Chapter 6.2). figure 6 depicts

an example I/O path that shows the I/O data flow from

two servers over caches to a switch, to network cache,

to an interconnected switch system and over a SAN

6/9



Towards I/O Analysis of HPC Systems and a Generic Architecture to Collect Access Patterns 7

Fig. 6 The activity oriented I/O path model [5] of two
servers, connected via network to a RAID-5 storage system.
The numbers represent bandwidths between nodes and nor-
mal (without read-ahead and write-behind) caches, shown as
clouds with data size. Note that the total amount of outgoing
data at one cross-section of the graph equals the total amount
of incoming data there.

Fig. 7 Causal communication path during initial modelling
phase. Node A on server 1 with PID 42 uses node B on server
1. The nodes are instrumented for SIOX. Additional calls
to report further attributes and capabilities are omitted for
clarity.

cache to block storage. Interfaces can be built for each

of the mentioned functionalities. The I/O path model

indicates where these interfaces must be installed on a

given PFS deployment, and how those layers interact.

This will enable us to assess and optimize the layers.

Fig. 8 Special case where two UNIDs on instrumented
software-layers open the same file on unid k. Without report-
ing the descriptor mappings of unid a, unid b and unid k, no
distinction between actions initiated by unid a and unid b is
possible.

6.1 SIOX System Communication Procedure

On initialization, every node in an HPC system running

the SIOX system has to register with its HWID, SWID

and PID. Examples for HWIDs are Node 12, HD 6784,

orServer 1. The SWID would be a character set such

as “POSIX“. An example of the registration process of

two nodes instrumented for SIOX is shown in figure 7.

6.2 Activity Information Collection

In order to distinguish different ”I/O activities“, an

AID is issued for each. Redundant information will be

discarded as soon as possible to reduce the memory

footprint and speed up the processing.

Activity information is collected from the different

organizational layers of the access path. In the case of

OMPIO (in Open MPI), information can be obtained

from the different internal layers. Upon receiving a call

to open a file with MPI I/O, Open MPI selects ei-

ther ROMIO or OMPIO to perform the I/O opera-

tions, similar to the selection logic of other Open MPI

frameworks. If OMPIO is selected, it initializes all sub-

frameworks and these query their available modules.

The best fitting module will be used for the follow-

ing set of operations. For example, if GPFS is used,

the GPFS specific module or the module optimized for

GPFS will be selected. In the same way, a module with

a suitable I/O algorithm will be chosen. The informa-

tion about the modules used will be provided to the

SIOX system. In addition, access information will be

gathered from the sub-frameworks as well as from the

different modules. If ROMIO is selected, the Abstract-

Device interface for I/O (ADIO) within ROMIO gains

the controlling information of the I/O operation via the

7/9



8 Marc C. Wiedemann1 et al.

Fig. 9 ActivitynetGraph: An illustration of activity I/O on a graph combining hardware locations and software process
activity identifiers.

hints attached to the file-access operations. In this case,

we provide information about the chosen algorithm and

further available performance information.

Access information is correlated, transformed, com-

pressed, and stored as an access pattern which allows

both modelling and analysis. Subsequently gained knowl-

edge enables us to optimize the I/O strategies.

7 Combination of Activity Entities and Node

Information

For information extraction, it will be necessary to have

a multidimensional approach, covering the complex net-

work of physical nodes and interacting entities such as

activity nodes in figure 9. One way is to state the abil-

ities of the distributed entities first, then the relations

between them. A graph would integrate these relations

grouping similar entities together as functional groups.

Functional groups for client activities are access(),

open(), and other calls, for storage activity the amount

of data written/read per time frame, for network activ-

ity the network packets.

Activity nodes initiate activities or react to activi-

ties, such as when answering a call. To make it possible

to track AIDs and Node-IDs together, the graphviz li-

braries2 can be used to draw changeable graphs of com-

plex systems.

With the the analysis and correlation of the AID

and node information, the SIOX knowledge base (see

figure 3) will accumulate specific expertise about which

calls on which nodes may cause unwanted system activ-

ity, and will be able to propose optimizations: At this

point, I/O calls could be rewritten to produce more

favourable access patterns or a summary which specific

2 www.graphviz.org/pdf/libguide.pdf

PFS or Open MPI adjustment parameters could be is-

sued to the (user) application.

8 Conclusion

Although we have not solved all problems of Chapter 1

yet, we have taken steps towards a comprehensive solu-

tion. SIOX’s aim is to create a system able to analyze

the I/O requests in HPC systems on a per-request base.

In this paper, we introduce first approaches: Due to

the abstraction of technical details of the hardware and

software used, future systems can be instrumented in

a generic, structured, maintainable and modular way.

Present achievements of the SIOX project include the

system architecture, the locations of information ex-

traction, first interfaces and a client-server daemon struc-

ture. We introduced a graph of the combination of I/O

hardware locations and software process activities. Op-

timization potential for specific application scenarios

exists on the layers application, high-level I/O such as

MPI-I/O and NetCDF, HDF5, the operating system,

the HPC file system and at hardware locations such

as I/O nodes, computing nodes and storage controllers.

The next steps include an evaluation of the interfaces

built, the instrumentation of MPI-I/O and NetCDF

and the theoretical survey for the analysis of patterns.

Also, more interfaces will be defined, and the first im-

plementations started.

Interested readers are kindly encouraged to become in-

volved in the project through our internet presence3.

3 www.hpc-io.org

8/9



Towards I/O Analysis of HPC Systems and a Generic Architecture to Collect Access Patterns 9

References

1. Babu, S., Borisov, N., Uttamchandani, S., Routray, R.,
Singh, A.: DIADS: Addressing the ”My-Problem-or-
Yours” Syndrome with Integrated SAN and Database Di-
agnosis. In: FAST’09: Proccedings of the 7th conference
on File and storage technologies, pp. 57–70. USENIX As-
sociation, Berkeley, CA, USA (2009)

2. Chaarawi, M., Gabriel, E., Keller, R., Graham, R.L.,
Dongarra, J.J.: Ompio: A modular software architecture
for mpi i/o (2011)

3. Geimer, M., Wolf, F., Wylie, B.J.N., Becker, D., Böhme,
D., Frings, W., Hermanns, M.A., Mohr, B., Szebenyi, Z.:
Recent Developments in the Scalasca Toolset. In: Tools
for High Performance Computing, Proceedings of the
3rd International Workshop on Parallel Tools. Springer
(2009)

4. Hermanns, M.A., Geimer, M., Wolf, F., Wylie, B.J.N.:
Verifying Causality Between Distant Performance Phe-
nomena in Large-Scale MPI Applications. In: Proc. of
the 17th Euromicro International Conference on Paral-
lel, Distributed, and Network-Based Processing (PDP),
Weimar, Germany, pp. 78–84. IEEE Computer Society
(2009)

5. Julian Kunkel, Thomas Ludwig: IOPm - Modeling the
I/O Path with a Functional Representation of Parallel
File System and Hardware Architecture. to be published
(2011)

6. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M.,
Lieber, M., Mickler, H., Müller, M.S., Nagel, W.E.: The
Vampir Performance Analysis Tool-Set. In: Tools for
High Performance Computing, Proceedings of the 2nd
International Workshop on Parallel Tools, pp. 139–155.
Springer (2008)

7. Knüpfer, A., Nagel, W.E.: Compressible memory data
structures for event-based trace analysis. Future Gener.
Comput. Syst. 22, 359–368 (2006)

8. Kunkel, J.: HDTrace – A Tracing and Simulation Envi-
ronment of Application and System Interaction. Tech.
Rep. 2, Deutsches Klimarechenzentrum GmbH, Bun-
desstraße 45a, D-20146 Hamburg (2011)

9. Lofstead, J., Zheng, F., Klasky, S., Schwan, K.: Adapt-
able, metadata rich io methods for portable high perfor-
mance io (2009)

10. Noeth, M., Ratn, P., Mueller, F., Schulz, M., de Supin-
ski, B.R.: Scalatrace: Scalable compression and replay of
communication traces for high performance computing.
J. Parallel Distrib. Comput. 69, 696–710 (2009)

11. Paul Barham Austin Donnelly, R.I., Mortier, R.: Using
magpie for request extraction and workload modelling.
Microsoft Research (2004)

12. Shende, S.S., Malony, A.D.: The TAU Parallel Perfor-
mance System. Int. J. High Perform. Comput. Appl.
20(2), 287–311 (2006)

13. Thakur, R., Gropp, W., Lusk, E.: On implementing mpi-
io portably and with high performance (1999)

14. Thereska, E., Salmon, B., Salmon, O., Strunk, J., Wachs,
M., el malek, M.A., Lopez, J., Ganger, G.R.: Stardust:
Tracking Activity in a Distributed Storage System. In:
ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp. 3–14. ACM Press
(2006)

15. Timo Minartz Daniel Molka, J.K.M.K.M.K.T.L.: Hand-
book of energy-aware and green computing. Chapman
and Hall/CRC Press Taylor and Francis Group LLC
(2012)

9/9


