Understanding Hardware and Software Metrics
with respect to Power Consumption

Julian Kunkel®, Manuel F. DolzP

¢German Climate Computing Center, DKRZ GmbH, 20.146—Hamburg, Germany
bDept. of Computer Science, University Carlos III of Madrid, 28.911-Leganés, Spain

Abstract

Analyzing and understanding energy consumption of applications is an important task which allows re-
searchers to develop novel strategies for optimizing and conserving energy. A typical methodology is to
reduce the complexity of real systems and applications by developing a simplified performance model from
observed behavior. In the literature, many of these models are known; however, inherent to any simplifica-
tion is that some measured data cannot be explained well. While analyzing a models accuracy, it is highly
important to identify the properties of such prediction errors. Such knowledge can then be used to improve
the model or to optimize the benchmarks used for training the model parameters. For such a benchmark
suite, it is important that the benchmarks cover all the aspects of system behavior to avoid overfitting of
the model for certain scenarios. It is not trivial to identify the overlap between the benchmarks and answer
the question if a benchmark causes different hardware behavior. Inspection of all the available hardware
and software counters by humans is a tedious task given the large amount of real-time data they produce.

In this paper, we utilize statistical techniques to foster understand and investigate hardware counters
as potential indicators of energy behavior. We capture hardware and software counters including power
with a fixed frequency and analyze the resulting timelines of these measurements. The concepts introduced
can be applied to any set of measurements in order to compare them to another set of measurements. We
demonstrate how these techniques can aid identifying interesting behavior and significantly reducing the
number of features that must be inspected. Next, we propose counters that can potentially be used for
building linear models for predicting with a relative accuracy of 3%. Finally, we validate the completeness
of a benchmark suite, from the point of view of using the available architectural components, for generating
accurate models.

Keywords: HPC, data analysis, power modeling, statistical methods, performance counters, energy
consumption.

1. Introduction

Power and energy consumption have been identified as the single largest challenges in the design of
future Exascale high-performance computing (HPC) systems [1]. Basically, the vast increase of levels of
parallelism to the point of millions of processors working concurrently is a challenge that will need radical
changes in hardware and software design (e.g., programming models, compilers, I/O libraries, etc.) [2]. Thus,
understanding how computers use power is key to develop a new hardware and software stack in order to
face the Exascale challenge.

Nevertheless, the implementation and deployment of Exascale systems calls for a holistic approach that,
with the use of power and performance tracing tools and wattmeters, allows the inspection of power bottle-
necks and energy hotspots of current scientific parallel software. However, acquisition costs and deployment

Email addresses: kunkel@dkrz.de (Julian Kunkel), mdolz@inf.uc3m.es (Manuel F. Dolz)

Preprint submitted to Elsevier January 17, 2018

The final publication is available at ScienceDirect via the DOI 10.1016/j.suscom.2017.10.016
1/19

of power measurement devices can be, due to the nature of the platforms and number of nodes, infeasible.
Recent research has significantly demonstrated that a promising alternative in order to mitigate this issue
is the design of power models [3, 4, 5]. Taking into account that most of the current processors feature a
large set of hardware counters, temperature sensors, and resource usage statistics provided by the operat-
ing system, one could cleverly use this information to predict power drawn by individual components and
system power consumption. For instance, a per-component power model could be easily exploited to make
energy-aware scheduling with the aim of reducing the power consumption while preserving performance [6].

As highlighted in [7], a good power model should always be accurate, simple, inexpensive and portable.
Indeed, recent works have shown that many power models can fulfill all these properties while providing
fairly good estimations [3, 4, 5]. In this sense, a classical methodology to validate the accuracy of power
models has only been carried out by calculating the preciseness and responsiveness of their predictions [8].
However, this approach may lead to optimistic results because often i) the static power is included when
computing relative accuracy, i) the model is applied to complete application runs where statistical effects
negate individual errors, #4) the selection of similar training and validation data may lead to optimistic
errors, w) a few strong outliers of the model may still lead to a good relative accuracy. Thus, while
analyzing model accuracy is important, we believe it is even more relevant to identify the properties of such
predictors, i.e., relations between metrics in order to understand the source of these errors. Therefore, in
this paper we aim at understanding and identifying behavior of hardware counters in order to explain and
model power consumption. We also validate the completeness of a benchmark set, from the point of view
of utilizing available architectural features, for generating accurate models. Note that we leave the building
of power models part as future work.

The paper is structured as follows: First, we present related work in Section 2. In Section 3, we describe
the statistical methods that are used to draw conclusions over a set of hardware counters and benchmarks.
Afterwards, in Section 4 we demonstrate their use on several experiments to i) identify properties for the
highest and lowest energy consumption, ii) localize outliers of a linear model based on the Intel RAPL
(Running Average Power Limit) interface, i) identify different phases of the linpack benchmark, and iv)
investigate the impact of benchmarks that encompass a training suite for models. Finally, we conclude the
paper in Section 5.

2. Related Work

We classify the work related to this paper in three different categories: i) building of power and energy
models using statistical analysis using hardware counters; i) techniques leveraging power models to dynam-
ically limit energy consumption; and i) integrated interfaces in current architectures to provide on-line
power measurements.

In the literature, we find a large collection of works using statistical analysis for building power and energy
models based on hardware counters. For instance, the approach by Xiao et al. [9] presents a methodology for
building system-level power models based on regression analysis without the need of power measurements
at component level. In this sense, the regression models describe the aggregate power consumption of the
processors, the wireless network interface and the display using hardware performance counters. Similarly,
Shang et al. [10] present an efficient adaptive regression-based high-level power model to estimate FPGA
power consumption. In order to improve on-line power estimation accuracy, they use adaptive regression
methods to lessen the problem of biased training sequences and to finally achieve a good trade-off between
efficiency and accuracy. To deal with the accuracy issue, the work by McCullough et al. [11] investigated
on the accuracy of hardware counters-based models and concluded that the inherent complexity of the
system architectures and the current microprocessors are, in most of the cases, the root cause of the model
errors. Nevertheless, they stated that hardware counters are, as of today, the only source to obtain fine-grain
information about the platform.

Research leveraging power models to dynamically limit energy consumption can also be found in the
literature. For instance, we encounter works using models for controlling dynamic voltage and frequency
scaling (DVFS) [12] and for guiding compilers to generate energy-efficient codes [13]. Similar works have
also used models to reduce power in system components other than processors, such as RAM [14] and

2

2/19

disks [15]. Researchers have also analyzed the impact of techniques using such models to control a single
knob —either DVFS or dynamic concurrency throttling (DCT)— for dynamic power management on shared-
memory [16, 17], and on distributed-memory parallel systems [18, 19]. The work from Curtis-Maury et
al. [20] differs from earlier research since it uses multiple knobs in several key aspects, such as for DVFS and
DCT. To do so, this work proposes methods to generalize multi-dimensional prediction models that leverage
statistical analysis for estimating how DVFS and DCT influence the performance of applications.

On the other hand, we find that many hardware manufacturers have integrated hardware counters in
order to provide on-line measurements and reduce the energy consumption. For example, the Intel Running
Average Power Limit (RAPL) counters [21], the AMD Application Power Management (APM) interface [22]
and the IBM Power?7 interface [23] provide power measurements based on models and sensors of the proces-
sors. Besides, recent NVIDIA GPUs report power usage via the NVIDIA Management Library (NVML) [24].
It is important to highlight also the Intel Intelligent Platform Management Interface (IPMI) [25] which mea-
sures total server power using on-board sensors and supports the reading of additional sensors.

All in all, we conclude that the application of statistical methods for data analysis [26] in the domain of
energy-efficiency has been used as a fundamental technique to derive power models. However, none of those
studies has used advanced statistical methods prior ensuring that independent variables of the models are
reliable and robust enough for building them. From the techniques we apply in this paper, and to the best
of our knowledge, only the Pearson product-moment correlation coefficient has been previously used [27]. In
this sense, the novelty of this paper lies in the use of statistical methods, normally applied to other sciences,
to the specific field of power modeling. To some extent, as well, such knowledge can be used to improve the
models or to develop benchmarks that aid in the design of models for future architectures. In sum, this paper
uses advanced statistical methods i) to analyze measured data in much more detail, i3) to reveal interesting
properties and 4ii) to validate the completeness of a benchmark set for generating accurate models.

3. Methodology

In this section, we explain in detail the methodology used to apply the statistical methods for analysis
performed in this paper. First, we give details about the HPC plaform and the benchmark suite used to
build the target data set. Next, we formalize this data set for further analysis and, finally, we describe three
advanced statistical methods used along the paper.

3.1. Target platform and benchmark suite

Our measurements were gathered on an Intel Xeon CPU “Sandy Bridge” E31275 processor with 4 cores
running at 3.40 GHz (with the performance governor and active Turbo Boost!), and 16 GB of DDR3 RAM
(1333 MHz).2 We collected the following information:

1. Power consumption is captured with a frequency of 20 Hz from an external ZES-Zimmer LM G450 [28],
a highly advanced precision wattmeter, using the PMLIB framework [29].

2. Hardware counters are gathered at 10 Hz? leveraging the 1ikwid-perfctr command from the LIKWID
tool 4 with the timeline option set. In this architecture, we have identified 220 hardware counters that
are accessible through PMC, FIXC and PWR registers, the latter capturing the RAPL socket power.

3. Operating system statistics and temperature sensors are also retrieved at 10 Hz using an instance of
the PMLIB server reading CPU, memory, network and I/O utilization and temperature.

In order to emulate the different phases of an application and for utilizing different components of the
architecture, we selected the following applications:

1We cover Turbo Boost on purpose, as several HPC centers enable it for specific workloads.

?Due to space limits, we are only able to carry out the evaluation using a single platform.

3We consider 10 samples/s sufficient enough for our experiments, ensuring negligible overhead on the total power consumption
due to monitoring processes [30].

4http://code.google.com/p/likwid/

3/19

1. idle: To measure the idle state of the machine, we used the sleep Linux utility to suspend the
executing process for an interval of time. This benchmark is denoted as idl.

2. linpack: This pre-compiled linear algebra code from Intel contains the optimized LINPACK [31]
benchmark®. Internally using MKL libraries, it performs FPU/ALU instructions with the purpose of
utilizing the CPU. In the following this application is denoted as cpu.

3. stream:® This benchmark is intended to obtain the best possible memory bandwidth by means of
simple vector kernels. This benchmark is subsequently denoted as mem.

4. iperf: This tool” performs network throughput measurements. We test both a server and a client
running TCP throughput tests, which are denoted as nts and ntp, respectively.

5. I0R:® This benchmark tool is used to investigate POSIX performance to a local SSD, and is designated
as ior and iow for writes, respectively.

6. Kernel make: We compile the Linux kernel v3.19.2 by executing make -j. This benchmark is denoted
as mke.

7. Quantum Espresso:? This is a software suite for electronic-structure calculation and materials mod-
eling. From this suite, we used 17 different on four cores of the machine using MPI.

3.2. Building the data set

To build the data set, we executed the benchmarks 1-7 individually from one to four cores. Next, we also
ran combinations of benchmarks 1-5 concurrently on multiple cores. Over a runtime of 60s, we collected, at
the different allowed frequencies, the features of hardware counters, OS statistics and temperature sensors.
(Note that for Quantum Espresso we captured the whole runtime of each experiment.) Since we could
only measure 4 hardware counters simultaneously, each benchmark was run more than 60 times, each time
capturing a new set of counters'®. Among runs of I/O sensitive benchmarks, we cleared the cache to retain
similar start conditions. We derived averaged values for features that were collected at core level for several
reasons: 1) it prevents issues caused by migration of processes and threads between cores; 2) it is invariant
to the number of available cores and executed processes; 3) it accounts to the fact that it does not matter on
which logical core a process is executed. In total, for 99 experiments 252 features were recorded for 112, 303
timestamps resulting in a CSV file of 295 MB.

Afterwards, we postprocessed the data using Python scripts in order to i) merge data from different
benchmarks, ii) check for consistency and availability of all features, iii) drop overflowing values'!, and iv)
interpolate the data of the features to the time stamps of the measured power.

To motivate further application of statistical methods, we formalize our target data set. As stated, this
set consisted of 252 hardware and software features which resulted in sequences of 112,303 time intervals
I, = ((t—1) - k,t- k] with duration k. Note that k& was calculated as the inverse of the frequency of the
stream captured at the highest rate. Also, in each time interval, we relate the tuples of measurements as
m(t) = (f1(t),..., fi(t),..., fn(t)) where f;(t) is the value of the i-th feature for the time interval t. An
excerpt of our data table, represented as a matrix, is given in Table 1.

3.8. Advanced statistical methods

In the following, we describe the three advanced statistical methods that are used throughout the paper
to identify the relations. (Note that for the sake of simplicity, we do not describe these methods in detail.)
With them, the goal is to identify causal relations between two sets of measurements, where a set is defined
as S = {m(t;),m(t;),...}. For example, two interesting sets (R and O) could be obtained by selecting
measurements exhibiting regular performance behavior and the remaining measurements, i.e., the outliers.
Using these methods, we can investigate the differences in the characteristics of R and O.

Shttps://software.intel.com/en-us/articles/intel-math-kernel-library-1linpack-download
Shttps://www.cs.virginia.edu/stream/

"https://iperf.fr/

8http://sourceforge.net/projects/ior-sio/

9h1:1:p: //wuw.quantum-espresso.org

10Duye to identical start conditions, we assume counters of repeated runs to behave similarly.

1 About four samples per 600 contain overflowing counters.

4

4/19

© —_
2z 8
? 2 o £
.9 5 B
5% < S =
88 g2z 2 =3 S <
& H g 1} o 9 = S
—~ o = "9 o]
z | g g2 = 35 3 g
S - 2 = |3 |8 &% 22 N -
5 5 5 3 E o lag CE 8% 8¢ ° | & 8
S S s s 4 23 B g5 4, ~ o =
5]]] < ! a8 0] @ 0 5
L L £ S - &2 i) 54 % g 4 N s
= = = =)] =g = g = 3 o o 5
= = 0t : | E|3: EB: EZ 55 i i &
< < < < £ | g E3S) 52 52 g 3 O
ntc mem cpu cpu | 1.70 | 381 53940444 8991759 17780300 53.8 | 57.9 77.21
ntc mem cpu cpu | 1.75 | 373 53918367 8988070 17864184 53.8 | 58.0 77.50
ntc mem cpu cpu | 1.80 | 371 53956891 8994500 16592948 53.8 | 58.0 77.50
ntc mem cpu cpu | 1.85 | 373 54029089 9006552 14568724 53.6 | 58.0 77.42
ntc mem cpu cpu | 1.90 374 54017954 9004704 13824812 53.5 | 58.0 77.30
cpu idl idl idl | 1.70 | 384 29577022 4930281 1338917 44.0 | 46.0 27.32
cpu idl idl idl | 1.75 | 381 20622258 4937823 1338546 44.0 | 46.0 26.44
cpu idl idl idl | 1.80 | 379 29663007 4944617 1338024 44.0 | 46.0 25.19
cpu idl idl idl | 1.85 | 381 29683252 4947990 1336816 44.0 | 46.0 26.05
cpu idl idl idl | 1.90 | 382 29692978 4949610 1336118 44.0 | 46.0 27.30

Table 1: Excerpt of the data table with a few features (out of 252).

Correlation.. Outliers of a performance prediction model can be identified using the residual error err =
observation — prediction and defining a threshold upon which a measurement is considered to be an outlier.
Linear correlation between any feature and the prediction error can easily be obtained by computing the
Pearson product-moment correlation coefficient [27]. When comparing two variables, a correlation coefficient
of 1 indicates that those two variables behave alike, e.g., a hypothesis might be that power is correlated to
the number of instructions processed. Similarly, a value of 0 shows that there is no linear correlation. This
also allows for identifying features with a linear correlation to a model’s error.

Kolmogorov-Smirnov (KS) test.. In statistics, there are many hypothesis tests for evaluating whether ob-
servations are modeled by a certain process. Most of these tests impose certain requirements on the data
and offer parameters that must be carefully adjusted. The Student’s t-test, for example, allows for testing
whether two data sets are significantly different; however, it needs normal distributed data. The Kolmogorov-
Smirnov test [32], in contrast, is a non-parametric test which can be used for testing whether the empirical
probability distribution of one data set behaves like that of another. Moreover, it supports testing of the
probability distributions for one data set creates lower values than the distribution of another and returns a
probability value (p-value). Thus, we may identify features of O that typically show higher, lower or similar
values to those of R. Once we identify that one feature is typically higher than another, the mean values can
be compared to determine a ratio. We call this the outliers-factor. (OFactor is the mean value of outliers
divided by the mean of the regular cases.) This method is much more robust than just comparing means of
data sets.

Principal component analysis (PCA).. The PCA [33] is a procedure that converts the observations —with
potentially correlated features— into a set of linearly uncorrelated variables called principal components. The
principal components form an orthonormal basis of the data, where the extracted components are ordered by
decreasing variance that is described. Each component C(%) is a basis vector and describes the contribution
of all features to this basis, C(i) = (c;,, ..., ¢,)T . Usually a few components allow to describe the input data
sufficiently well and later components contribute little to it. Therefore, the complexity of the analysis can
be reduced to the analysis of the principal components. By using this technique, we can identify outliers or
similarities between data sets such as benchmarks.

5/19

4. Analysis of the power consumption

In this section, we demonstrate the benefits of the aforementioned statistics methods and evaluate them
on several examples using the gathered data set. As a simple exercise, we analyze the behavior of the
measurements with the lowest and highest 10% power consumption. Then, we investigate cases in which a
linear model based on RAPL cannot cover the power measurement well. Next, interesting phases of linpack
are identified and assessed. Finally, the composition of our test suite’s applications is investigated.

4.1. Power consumption

At first, we investigate the correlation of any feature to the external power consumption. An excerpt
of the features is given in Table 2. Next, we group the resulting correlated variables depending on the
amount of their correlations. With the results, some observations can be made. For instance, we notice
the weak negative correlation of I/O to power consumption. This is by the fact that IOR does not perform
CPU-intense operations while doing I/O. Indeed, IOR it does not perform many CPU operations. Since
CPU accounts for the highest contribution to energy consumption on typical platforms, synchronous I/0 is
expected to show negative correlation.

Our second observation is that features in the next group are not correlated at all, neither are the amount
of free memory of the system and the page cache size. Also, the number of flushes of the second level /shared
TLB (TLB_FLUSH_STLB_ANY) does not correlate to power. In the next group, there are features with a weak
correlation, for example, the eviction rate on the L1 data cache. Finally, we focus on the last group, which
shows highly correlated counters. For example, the number of clock cycles during which the core is busy and
the CPU temperature are highly correlated to external power. Note that all these correlations apply to the
full data set. It may happen that a feature is correlated according to this data without having a stringent
causal connection.

[Correlation [Feature]

-0.285 io_Write_bytes

-0.057 net_Bytes_sent

0.001 memory_VM_Cached

0.004 ITLB_ITLB_FLUSH

0.006 MEM_LOAD_UOPS_LLC_HIT_RETIRED_XSNP...
0.019 FP_ASSIST_SIMD_INPUT

0.023 memory_VM_Free

0.026 PARTIAL RAT_STALLS_MUL_SINGLE_UOP
0.027 FP_COMP_OPS_EXE_SSE_FP_SCALAR_SINGLE
0.028 TLB_FLUSH-STLB_ANY

0.512 LOAD_HIT_PRE_SW_PF

0.520 L2_STORE_LOCK_RQSTS_HIT_E

0.525 L1D_ALL_M_REPLACEMENT

0.525 L1D_M_EVICT

0.903 CPL_CYCLES_RING123

0.904 L2_TRANS_ALL_REQUESTS

0.909 CPU_CLK_UNHALTED_REF

0.913 CPU_CLK_UNHALTED_CORE

0.951 sensors (ACPI temperature of all cores)
0.979 PWR_PKG_ENERGY

Table 2: Correlation of features to power. Lower case features are OS statistics, others are hardware counters with their
LIKWID name.

4.1.1. Analysis of the outliers

In this section, we determine the 10% and 90% quantiles and consider the lowest and highest 10% of
data points as two sets of outliers (L and H). In our case, L concerns measurements with less than 50.4 W
and H those higher than 117.2 W. Next, we compare these outliers to the other 90% of data points using the
KS-test. Note also that we only consider p-values of at least 0.95. Table 3 shows a selection of features and
their OFactor for L. The first part of the table shows that the identified features in L have typically higher
values than the others. For instance, it can be seen that the average value of net_Bytes_recv is lower but,

6

6/19

[OFactor [Feature

KS reports a higher probability distribution:
32.358 OTHER_ASSISTS_AVX_TO_SSE
[OFactor [Feature 6.572 FP_256_PACKED_DOUBLE
5.187 L2_LINES_OUT_PF_CLEAN
4.613 LOAD_HIT_PRE_SW_PF

KS reports a higher probability distribution:

1.82 net_Bytes_sent
e e en oot 4.271 OFFCORE_REQUESTS_ALL_DATA_RD
ig‘;’ i:’:";gi”;:‘c':ﬂable 1.907 RESOURCE_STALLS2_000_RSRC
o3 nat Bytes. cacy 1.892 RESOURCE_STALLS2_ALL_PRF_CONTROL
— 1.825 MEM_LOAD_UOPS_MISC_RETIRED_LLC_MISS
KS reports a lower probability distribution: 1.823 CPU utilization
0.000 OTHER_ASSISTS_AVX_TO_SSE 1508 External power
0.002 FP256_PACKED DOUBLE 1.452 LOAD_BLOCKS_ALL_BLOCK
0.004 io-Read-bytes 1.314 sensors_Phy_id_0
0.005 L2_LINES_QUT_PF_CLEAN 1308 s

0.005 LOAD_HIT_PRE_HW_PF

0.005 RESOURCE.STALLS.ROB KS reports a lower probability distribution:

0.000 io_Read_bytes
0.007 L3-LAT.CACHE-MISS 0.000 PARTIAL_RAT_STALLS_MUL_SINGLE_UOP
0.010 INSTR_RETIRED_ANY 0.002 ILD.STALL LCP
0.012 RESOURCE_STALLS2_000_RSRC 0.006 o Write_time

0.011 FP_ASSIST_ANY

0.042 UOPS_DISPATCHED_PORT_PORT_O
0.043 ARITH_NUM_DIV

0.043 UOPS_DISPATCHED_CORE 0.034 FP-ASSIST.X87-INPUT

0.034 TLB_FLUSH_STLB_ANY

0.037 MEM_UOP_RETIRED_STORES_LOCK

0.042 MEM_UOP_RETIRED_LOADS_LOCK

0.045 BR_INST_EXEC_DIRECT _NEAR_CALL_TAKEN

(a) Lowest 10%. 0.220 net_Pack.recv
0.717 MEM_LOAD_UOPS_LLC_HIT_RETIRED_XSNP_HIT

(b) Highest 10%.

0.508 External power
0.654 sensors

Table 3: Features identified with the KS-test. Outliers are the measurements with highest/lowest 10% of power.
OFactor(feature) = mean(outliers) /mean(regular data).

according to KS, the probability distribution of the outliers favors higher values. Compared to our typical
measurement, more than 120 of all features have lower values than with regular execution, e.g., the number
of FP operations is just 1/500 of the normal data. Clearly, the external power of L is lower (about half of
the maximum) as we have created L by selecting measurements with the lowest power consumption.

Table 3b shows an excerpt of factors for the outliers with higher power consumption. The KS-test
identifies 55 features with higher values and 33 features with lower values. The highest factors are the
number of assists, i.e., transitions from AVX-256 instructions to legacy SSE, floating point 256 operations
and L2 clean cache lines eviction events triggered by L2 prefetch. Lower values are, for example, I/O and
FP assists.

4.1.2. Discussion

This example shows that it is possible to considerably reduce the number of features to inspect manually
applying the KS-test. However, not all the features behave symmetrically. Therefore, high values from
one set of outliers does not automatically lead to low values for the other set. For instance, the feature
RESOURCE_STALLS2_000_RSRC is expressed in both sets of outliers. To illustrate the methodology using the KS-
test and the OFactor, a few key statistics of this metric are listed in Table 4. In this case, the probability
distributions between the outliers and the complementing set overlaps, e.g., the maximum value for the
lowest 10% is higher than the 3rd quartile for the highest 90%.

Once we have identified this behavior, we should to identify the cause. In this simple example, the
selection of benchmarks in our data set is causing the divergence of the features between lowest and highest
energy consumption. For L, the main data points from at least one idle core are included when either iperf
or I0R run. Also, H includes runs with at least one linpack and stream runs on different CPUs. Therefore,
we identify differences between these applications. In general, this methodology becomes more interesting
when we pick outliers with more complex rules.

7/19

[Experiment H Min. [1st. [2nd [Mean [3rd [Max.]

Lowest 10% 894 5892 12K 186 K 14 K 75 M
Highest 90% 913 1M 7,4 M 15 M 22 M 246 M
Highest 10% 37K 4,9M 18 M 24 M 35M 147 M
Lowest 90% 894 19K 3.4M 13M 16 M 246 M

Table 4: Statistics of the RESOURCE_STALLS2_000_RSRC feature for the power outliers. The data sets with the 90% regular
behavior are included for reference.

[Description [Idle [1CPU [2CPU [3CPU [4 CPU]

RAPL 4.41 32.76 53.37 71.77 87.47
Ext. power 42.51 79.01 103.42 126.53 148.78
Fitted 42.38 78.28 104.36 127.66 147.54

Table 5: Measured power and linear fitting in Watts for idle and one to four active cores running linpack.

4.2. Correlation of RAPL counters to external power

In this experiment, we first build a primitive model for predicting power based on the RAPL counter,
and then assess the outliers of the model. Therewith, we are able to understand the characteristics of
mispredictions.

4.2.1. Model outliers

The model is built by using our measurements for the idle case and one to four active cores run-
ning linpack. Using linear regression to the median power for 0-4 active cores, we obtain the model
External power = 36.808 + RAPL - 1.266. As can be seen, the coefficient for RAPL is above 1. This is
mainly because the external power measurements are always higher than those obtained by the RAPL coun-
ters, which only measure the power consumed by the processor sockets, but do not consider other hardware
components such as motherboard, HDDs, NICs, nor power dissipated by the PSU itself. In our case, the
350 W PSU is certified with 80+ Gold level which guarantees 88%, 92% and 88% efficiency under 20%, 50%
and 100% levels of load, respectively. Measured power consumption and fitted model results are given in
Table 5.

Next, we compute the error of the model and build the outliers from 5% of the highest and 5% lowest
error. The RAPL power and corresponding external power consumption is shown in Figure 1. The red
values are considered to be outliers as their error to the accurate prediction is above 11.2W (95% quantile)
and below —3.8 W (5% quantile). We call these the upper and lower outliers, respectively. It can be observed
also that the RAPL power varies considerably for a fixed external power and external power varies for a
fixed RAPL power, but there is a high correlation between those counters and the model.

Note that now the outliers stem from our diverse set of benchmarks including Quantum Espresso. In-
specting the applications, it turns out that a large share of the outliers is formed by experiments of which
one core runs linpack and/or stream together with iperf. This matches our expectations that external
communication and memory operations cannot be explained well by the RAPL counters. However, the I0R
benchmark is underrepresented in the set of outliers, and thus, it can be well predicted with the RAPL
model.

4.2.2. Correlation to error

One hypothesis is that a feature is directly correlated to the prediction error because it may not be taken
into account by the internal algorithm for computing the RAPL model-based counters. Table 6 gives an
excerpt of the features most correlated to the prediction error. As can be seen, there is only a weak correlation
of some hardware counters to the error. Figure 2 shows the value of the counter LOAD_HIT_PRE_HW_PF'2 and its
distance to the error. It can be observed also that the weak causal relation is hard to identify by humans.
Similarly, the counter CPU_CLOCK_UNHALTED_THREAD P'? reveals that the more cycles are actually performed,

12Not SW-prefetch load dispatches that hit fill buffer allocated for H/W prefetch.
I3Number of thread cycles while the thread is not in a halt state.

8

8/19

100
|

50

Power consumption in Watt

0 20 40 60 80
RAPL power in Watt

Figure 1: RAPL counters vs. External power.

[p [Feature |

0.51 LOAD_HIT_PRE_HW_PF

0.51 CPU_CLOCK_UNHALTED_THREAD_P

0.46 MEMLOAD_UOPS_RETIRED_HIT_LFB

0.45 IDQ_DSB_UOPS

0.45 RESOURCE_STALLS_ROB

0.43 LOAD_BLOCKS_ALL_BLOCK

0.42 L3_LAT_CACHE_MISS

0.42 OFFCORE_REQUESTS_OUTSTANDING_DEMAND_RFO
0.41 MEM_LOAD_UOPS_MISC_RETIRED_LLC_MISS
0.40 L2_RQSTS_ALL_DEM_AND_DATA RD_HIT
0.40 LOAD_BLOCKS_STORE_FORWARD

0.39 UOPS_DISPATCHED_PORT_PORT_1

0.38 INSTR_RETIRED_ANY

Table 6: Correlation of features to the prediction error for the RAPL model.

the higher the potential error that can be obtained. Since there is a high correlation between this counter
and power consumption, it is, indeed, not an interesting outcome.

4.2.3. Applying the KS-test

We can also analyze the outliers by investigating one set in which we underestimate the power and one
where we overestimate it, or by comparing both sets to a regular execution. Table 7(a) shows the results
of the KS-test comparing outliers with the regular execution. The KS-test correctly identifies that network
operations are much more likely to occur in the outlier set while for I/O operations is less likely. This
fact has been known after inspecting the application mix. For example, it is also important to remark
that LOAD_BLOCKS_STORE_FORWARD'* is a bit higher than normal and counters responsible for stalls in multiply
packed/scalar single precision operations allocated and for cache locks are lower.

Applying the KS-test to the data sets with the lower or upper outliers and comparing it with the
remaining data shows many similarities but also describes some new characteristics of this data as listed in
Table 7(b,c). For example, the number of instructions executed in a distant branch is higher for the lower
outliers. In this case, the RAPL counter reports a larger fraction of the energy of the system than expected.

4.8. Analyzing individual applications

As scientific applications usually execute multiple phases repeatedly, we can treat the application execu-
tion as a black box and perform a principal component analysis in order to better understand the properties
and deviation of the application behavior. We illustrate this approach using the linpack benchmark running

M Number of loads blocked by overlapping with store buffer that cannot be forwarded.

9

9/19

_HW_PF (kg)
6 7
| |

LOAD_HIT_PRE_HW_FF

RAPL/Power distance in Watt

Figure 2: Prediction error vs. LOAD_HIT_PRE_HW_PF.

[OFactor]|

Feature

14.10
8.83
1.82
1.34
1.27
1.14
1.14

net _Bytes_recv

net Bytes_sent

FP_ASSIST X87_INPUT
LOAD_BLOCKS_STORE_FORWARD
L2_LINES_IN_I
MEMLOAD_UOPS_RETIRED_HIT_LFB
MEM_LOAD_UOPS_MISC_RETIRED_LLC_MISS

CACHE_LOCK_CYCLES_SPLIT_LOCK_UC_LOCK. ..
io_Read_time

io_Write_time
PARTIAL_RAT_STALLS_MUL_SINGLE_UOP

(a) All outliers

FP_ASSIST_X87_INPUT
MEM_UOP_RETIRED_LOADS_LOCK
BR_INST_RETIRED_FAR_BRANCH
OTHER_ASSISTS_AVX_TO_SSE

(b) Upper outliers

MEMLOAD_UOPS_RETIRED_HIT_LFB
MEM_LOAD_UOPS_MISC_RETIRED_LLC_MISS
FP_COMP_OPS_EXE_SSE_FP_SCALAR_SINGLE
DTLB_STORE_MISSES_STLB_HIT
CACHE_LOCK_CYCLES_SPLIT....
FP_ASSIST_SIMD_OUTPUT
PARTIAL_RAT_STALLS_MUL_SINGLE_UOP

(c) Lower outliers

Table 7: Features reported by the KS-test comparing RAPL models outliers to typical cases.

10

10/19

140
|
(]
o ox®
XXX
o
o

120
|

2(})

Power (in Watt)
100
!
%X oo
x o
@
oo
Mo
28K XX
?
Q}@iflj‘;
@
o

80
|

»wo
3

T T T T T T T
0 1000 2000 3000 4000 5000 6000

p2

(a) Timeline of external power.

Individuals factor map (PCA)
Variables factor map (PCA)

o cpucpucpucpu
- 8 + cpucpucpuidl
cpucpuidiidl
cpuidlidlid!

v
g ° g %
8 2
3 3
S/ = 5 =)

E < 7

£ E
e n

2

o E Lo

o :

e

i T T T T T T f T T T T

1 0 1 -0 -0 10 0 10 20 30 40
Dim 1 (42.10%) Dim 1 (42.10%)
(b) PCA, variables factor map. (c) PCA, individuals factor map.

Figure 3: Analyzing linpack running on 4 to 0 cores. The outliers with a value > 4 in dimension 2 are marked in red in the
timeline.

11

11/19

Feature [Correlation] [OFactor [Feature

IDQ-MITE_UOPS 0.955 0.025 FP_256_PACKED_DOUBLE
IDQ_MS_MITE_UOPS 0.953 0.060 OTHER_ASSISTS_AVX_TO_SSE
ARITH_FPU_DIV_ACTIVE 0.951 0.230 LOAD_HIT_PRE_SW_PF
ARITH_NUM_DIV 0.951 0.460 BR_MISP_EXEC_COND_NON_TAKEN
IDQ-MS_UOPS 0.951 0.540 BR_MISP_RETIRED_ALL_BRANCHES
INSTS_WRITTEN_TO_-IQ-INSTS 0.948 0.560 BR_MISP_EXEC_COND_TAKEN
ILD_STALL_IQ_FULL 0.944 21.80 TLB_FLUSH_STLB_ANY
FP_EXE_SSE_SCALAR_SINGLE 0.937 49.50 FP_COMP_OPS _EXE_SSE.FP_SCALAR_DOUBLE
FP_EXE_SSE_SCALAR_DOUBLE 0.937 49.70 IDQ-MS_MITE_UOPS
DSB_FILL_EXCEED_DSB_LINES 0.912 50.00 IDQ-MS_UOPS
DSB2MITE.SWITCHES PENALTY_CYCLES 0.900 50.10 ILD_STALL_IQ-FULL
FP_COMP_OPS_EXE_X87 0.889 51.10 DSB_FILL_EXCEED_DSB_LINES
DSB2MITE_SWITCHES_COUNT 0.883 51.90 ARITH_.FPU_DIV_ACTIVE
DSB_FILL_ALL_CANCEL 0.876 51.90 ARITH_NUM_DIV
L2_RQSTS_RFO_HITS 0.815 207.80 RESOURCE_STALLS_LB

(a) Features with the highest correlation to dimen- (b) Features identified with the KS-test on the PCA

sion 2. outliers of dimension 2.

Table 8: Analyzing linpack execution with PCA.

from 1 to 4 cores. Additionally, we include the idle measurements with the overall set for the analysis to
identify only relevant fluctuations. The timeline of the measured external power is illustrated in Figure 3a,
the figure concatenates the run with 4 cores down to 1 core and then the idle benchmark. Both black and
red dots represent the measured power.

When applying the PCA to this data set, we obtain the variable factor map as shown in Figure 3b. This
figure shows how the individual variables are aligned with respect to the new principal components, the bases
in dimension 1 and 2. Each arrow represents one feature, and two features that have no correlation between
them have a 90° angle in the figure. There are several components such as power that are highly positively
correlated to dimension 1. Several orthogonal aspects encompass dimension 2. Those two components
alone describe 53% of the overall variance. When applying the transformation to each measurement, we
obtain the projection onto dimension 1 and 2 according to Figure 3c. It can be observed that with each
additional linpack core, the data points move right along dimension 1, which is also representing power.
All executions show some diagonal cluster, however, there are data points aligned along dimension 2 that
increase spread when running with more cores. Note that dimension 2 is in fact not correlated to power,
the main contributing factors are listed in Table 8a. We can now investigate the data points that show a
deviation along dimension 2. By selecting the data points with a value > 4 in dimension 2, we obtain the
red points marked in Figure 3a. This represents that most of the points of a linpack phase utilize these
features significantly more than the other data points. Regardless of the number of cores, these outliers can
be easily detected.

To further investigate the data, we apply the KS-test to these outliers. An excerpt of the result is shown
in Table 8b. It can be seen that during the red marked phases, much less pre-fetched data is used but
also less branch mispredictions occur. Indeed during these measurements, 50x more scalar floating point
operations but also divisions occur and 200x resource stalls of the pop delivery due to load buffer (LB)
overflow. By inspecting all hardware counters, we can try to identify the cause of the behavior: for example,
the slow-down could be caused by the additional flushes of the second level TLB.

4.4. Investigating benchmark features

A consideration that has been taken into account to build the application suite for creating the data was
to utilize heterogeneous hardware features (CPU, memory, network and I/0). With the help of the PCA,
the differences between the benchmarks can be analyzed. After applying it to a data set which contains
the results of each application running on one core, the measurements are projected onto the first four
dimensions according to Figure 4. We can see that according to dimensions 1 and 2 IOR, idle and iperf
behave similarly. However, the application make is very diverse on dimension 1, while 1inpack and stream
are mostly arranged in dimension 2 and have little overlap. Dimensions 3 and 4 separate I0R and iperf,
still iperf has a lot in common with the idle benchmark. Note that those four dimensions together describe

12

12/19

Individuals factor map (PCA) Individuals factor map (PCA)

— cpu
idl
ior
- iow

mke .
ATY

Dim 2 (26.58%)
5
|
I i
ob

Dim 4 (4.32%)

0

|

-20 -10 0 10 20 30 40 -20 -15 -10 -5 0 5 10
Dim 1 (35.71%) Dim 3 (10.07%)
(a) Dimensions 1 and 2. (b) Dimensions 3 and 4.

Figure 4: PCA individual factor maps for our benchmarks.

already 75% of the overall benchmark variance. At best, an extremely diverse benchmark set would fill a
large fraction of the graph, while currently only little space is occupied.

From this analysis, we can conclude that it is not justified to add the iperf benchmarks to our test
suite. Even saturating our Gigabit Ethernet network is not sufficient to change the overall system behavior
significantly. Also, the IOR benchmark brings little novelty and is a candidate for replacement. Clearly, the
benefit of this analysis depends on the use case, for example, if we are training a linear model for power, we
must avoid overfitting to a data set with typical cases and instead optimize the benchmark suite.

4.5. Building linear models

In this section we investigate quantitatively the suitability of the 252 counters for building linear models
and prediction power consumption. Equation 1 shows how a linear model predicts the power of an instance
based on the values of n features. In the equation, f; is the value of feature 7 in the instance and the ¢; are
coeflicients fixed for the given linear model. The intercept c is an estimate for a constant contribution to
power.

n
Power(f17“7fn):c+zci'fi (1)
i=1

Usually, the model is trained with a data set called training set and the model error is analyzed on
a set called validation set. In our case, the standard training set are all benchmarks (1 to 5) and the
standard validation set consists of the kernel make and Quantum Espresso. Additionally, the trainNolperf
set contains all training benchmarks without the two iperf benchmarks as they do not contribute much to
the benchmark according to the PCA analysis and the set all contains every experiment conducted.

To assess the values, we consider the performance of a baseline model using the average power consump-
tion as prediction achieves a mean error of 24.4 W on all data. Any linear model that is worse than this
mean error is an indication that the chosen sets for training and validation exhibit different behavior.

To prepare the input data for training, we dropped the counters with fixed values for all observations.
For the remaining 217 counters, we created linear models with one and two features and enumerated all
possible variations of features. This means that for one feature 217 models are created while for two 46,872
models are possible. Additionally, for all relevant features which model achieve better mean error than our
baseline model on the validation set, we computed the combinations with three features. This results in
240,464 models.

Table 9 shows the quartiles and mean error of all models for a given training and validation set for one
and two features and Table 10 for the selected models with three features. The inherent model error of the
models can be assessed when the model is build and validated on the same data set, e.g., “all all and train

13

13/19

train”. As expected, in those two cases all models achieve a better accuracy than using a naive baseline
model. When training the models with the training benchmarks and applying them to the validation set,
about 50% of the models lead to a mean error of below 24 W and, thus, pass the expectation with our naive
model. When using more features, the best models improve but also more bad models emerge.

The distribution of the average error across all models is shown in Figure 5 for one, two and three
features. Even with one feature, a handful of models yield a prediction error below 10 W, among those is
the RAPL counter and, interestingly, the CPU temperature. About 55 models have a model error of at
least 100 W. The graph for models with two features is cropped after 20 W to focus on interesting models,
many models include RAPL counters and sensors. The graph for models with three relevant features also
shows that some linear combinations perform worse than 25 W although each of them individually achieved
a better performance than 25 W. In general, if the benchmarks had covered the characteristics sufficiently,
then all models would approximate the validation set better. Therefore, this is an indication that training
and validation experiments stress some individual counters differently or that these counters are simply not
relevant to power consumption as indicated by the PCA method. Note that, as also shown by the PCA,
many counters are correlated and, therefore, their number could be reduced by choosing those that correlate
better to the power consumption. Nevertheless, the goal of this section is to show that many variations
achieve an appropriate prediction performance.

[Training Validation H Min Q1 Median [Mean [Q3 Max l
all all 4.2 16.3 20.1 18.3 21.3 21.6
all train 4.2 16.0 20.6 18.5 21.7 21.9
all validation 3.9 14.6 17.9 17.3 20.4 25.2
all allNolperf 3.8 19.3 22.7 21.2 25.1 25.7
all trainNolperf 3.6 19.9 27.5 24.2 29.4 29.7
train all 4.2 16.8 21.7 183.1 32.6 16070.0
train train 3.7 15.1 18.7 17.5 21.7 22.0
train validation 4.5 20.3 24.0 899.3 92.2 85560.0
train allNolperf 3.9 20.3 26.1 407.7 53.1 37600.0
train trainNolIperf 3.4 17.2 23.8 22.4 29.2 30.4
trainNolperf all 4.3 17.8 21.8 210.9 41.9 15590.0
trainNolperf train 3.7 15.2 19.2 18.5 21.7 75.0
trainNolperf walidation 5.0 19.6 28.4 1044.0 142.3 83000.0
trainNolperf allNolperf 4.1 19.7 25.7 470.6 73.2 36480.0
trainNolperf trainNolperf 3.3 16.1 22.8 21.5 28.5 29.5

(a) With one feature.

[Training Validation [[Min Q1 Median [Mean [Q3 Max |
all all 2.1 12.5 16.8 15.7 19.8 21.7
all train 2.1 11.9 17.0 15.9 20.6 21.9
all validation 2.3 12.4 14.7 15.0 17.7 28.2
all allNolperf 2.2 14.0 18.8 17.9 22.1 25.8
all trainNolperf 2.2 13.8 21.0 20.1 27.3 30.2
train all 2.1 14.7 22.7 249.0 108.5 21110.0
train train 2.0 10.1 15.0 14.3 18.3 22.0
train validation 2.4 21.5 53.9 1265.0 507.1 112400.0
train allNolperf 2.4 18.6 33.0 565.6 233.6 49390.0
train trainNolperf 2.3 11.5 17.2 17.5 23.2 31.3
trainNolperf all 2.4 15.3 27.0 278.5 138.6 20370.0
trainNolperf train 2.3 10.3 15.3 15.6 19.8 99.6
trainNolperf walidation 2.6 22.2 68.6 1416.0 658.8 108400.0
trainNolperf allNolperf 2.3 18.7 39.7 631.4 299.4 47650.0
trainNolperf — trainNolperf 2.1 10.8 16.0 16.4 22.0 29.5

(b) With two features.

Table 9: Statistics for the mean prediction error of all linear models using the standard training and validation sets.

Table 11 shows the best 8 models that are not using RAPL counters. With more features, their quality
increases significantly down to a mean error of 3.1 W which is about 3% of the observed power variation. We
observe that about 4,787 combinations of two features achieve a better mean error than 20 W and 139,000
models with three features. Looking only at the best combinations with up to three features, it can be
observed that external power can be modeled easily.

14

14/19

Training Validation H Min Q1 Median [Mean [Q3 Max]

all all 2.0 8.1 10.4 11.1 14.2 21.6
all train 1.9 7.2 9.7 10.8 14.5 22.0
all validation 1.9 10.5 12.7 12.5 14.8 26.0
all allNolperf 2.1 9.5 12.4 12.6 15.4 25.7
all trainNolperf 2.1 7.7 11.3 12.7 17.3 30.2
train all 2.0 8.3 11.0 12.6 15.3 2886.0
train train 1.9 5.7 8.5 9.9 13.9 21.8
train validation 2.0 14.2 18.6 24.2 22.9 15300.0
train allNolperf 2.2 11.2 14.5 17.2 18.8 6735.0
train trainNolperf 2.2 6.3 9.9 11.7 16.1 30.4
trainNolperf all 2.2 8.4 11.4 14.8 16.9 3092.0
trainNolperf — train 2.1 6.2 8.9 11.4 15.0 69.9
trainNolperf wvalidation 2.3 13.8 18.2 29.4 24.1 16390.0
trainNolperf allNolperf 2.2 10.2 13.9 18.8 18.7 7214.0
trainNolperf trainNolperf 2.0 5.2 9.1 10.5 14.6 29.4

Table 10: Statistics for the mean prediction error of selected linear models with 3 features for our standard training and
validation sets.

[Features [Mean error]
UOPS_DISPATCHED_PORT_PORT_O 10.11
UOPS_DISPATCHED_PORT_PORT_1 10.69
IDQ-DSB_UOPS 10.98
BR_INST_EXEC_COND_TAKEN 12.12
RESOURCE_STALLS_RS 12.77
L2_TRANS_RFO 12.86
L1D_BLOCKS_BANK_CONFLICT_CYCLES 12.99
INSTR_RETIRED_ANY 13.05
INST_RETIRED_PREC_DIST 13.42

(a) With 1 feature.

[Features [Mean error]
FP_256_PACKED_DOUBLE + CPU utilization 3.13
L2_LINES_OUT.PF_CLEAN + CPU utilization 3.83
OFFCORE_REQUESTS_OUTSTANDING_ALL DATA RD + CPU utilization 5.25
HW_INTERRUPTS_RECEIVED + CPU utilization 6.08
CPU_CLK_UNHALTED_CORE + L2_RQSTS_PF_MISS 6.11
CPU_CLK_UNHALTED_REF + L2_RQSTS_PF_MISS 6.31
OFFCORE_REQUESTS_ALL_DATARD 4+ CPU utilization 6.57
INSTR_RETIRED_ANY + MEM_LOAD_UOPS_MISC_RETIRED_LLC_MISS 6.63

(b) With 2 features.

[Features [Mean error]
HW_INTERRUPTS_RECEIVED + LOAD_HIT_PRE_HW_PF + CPU utilization 3.12
HW_INTERRUPTS_RECEIVED + INSTS_WRITTEN_TO_IQ_INSTS + CPU utilization 3.61
HW_INTERRUPTS_RECEIVED + IDQMITE_UOPS + CPU utilization 3.93
DSB2MITE_SWITCHES_PENALTY_CYCLES + HW_INTERRUPTS_RECEIVED + CPU utilization 4.00
CPU_CLOCK_UNHALTED_THREAD P + HW_INTERRUPTS_RECEIVED + CPU utilization 4.33
OFFCORE_REQUESTS_OUTSTANDING_ALL DATA RD + io_Read_count + CPU utilization 4.34
OFFCORE_REQUESTS_OUTSTANDING-ALL_DATARD + io_Read-bytes + CPU utilization 4.36
OFFCORE_REQUESTS_OUTSTANDING-ALL DATARD + io_Read_time 4+ CPU utilization 4.41

(c) With 3 features.

Table 11: Best models using the standard training and validation sets that are not using any sensor or RAPL counters.

Finally, we analyze the influence of iperf to the created models and the differences to the validation
results. By comparing the statistical results for the standard training set with the reduced training set
without iperf, the typical model performs similarly (compare train and trainNolperf in Table 9 and 10).
The best models of the reduced training set with two and three features and their mean error are listed in
Table 12. The best models on the validation set rely on different features compared to the standard training
set. With the exception of the very best model, the 8 best models of the reduced training set perform better
on our validation data. The reason is that the standard training set optimizes for all of the benchmarks
equally and, as iperf behaves similarly to the idle benchmark, that behavior is overrepresented in the

15

15/19

)

N
o
I

total 217 models

N
o
1

Frequency (

o Aemn oo Al om imenn e oo

i i

75 100

0 25

50
mean absolute error in Watts

(a) With one feature (values above 100 W are set to 100).

5 i
5600_ , —
< :
7] :
L] :
3 :
Q400 ...
€ :
~ :
[e0] :
~ :
A :
(>)200_ , ..
c : :
) : : uses sensorg
=} : uses RAPL counters
o : ;
P el
L g I othermotlels| | | | | | | | | | | ..
0 5 10 15 20
mean absolute error in Watts
(b) With two features, X-axis is cropped after 20 W.
) ?
[) :
g :
E I z
: d H
P : iy I :
v‘loooo_ N
o H H
< : :
a :
®
L :
~ 5000 :
> i
(&) : B
c H B
) : :
> :
o :
5 [
LL 0_ - : - e
0 25 75 100

50
mean absolute error in Watts

(c) With three features (based on combinations of good features).

Figure 5: Histogram for using the standard training and validation sets showing the average model error of all models with a
fixed number of features. The stacked graph shows models using RAPL counters and sensors explicitly.

training set. This causes overfitting of the models while not bringing additional benefits. Therefore, the
results from the PCA analysis, which revealed that this benchmark does not contribute significantly to the
training set, are correct.

16

16/19

Features Mean error
OTHER_ASSISTS_AVX_TO_SSE + CPU utilization 3.64
RESOURCE_STALLS_ROB + CPU utilization 4.09
DSB2MITE_SWITCHES_COUNT + CPU utilization 4.14
CPU_CLOCK_UNHALTED_THREAD_P + CPU utilization 4.39
io_Read_time + CPU utilization 4.87
io_Read_count + CPU utilization 4.96
DSB_FILL_EXCEED_DSB_LINES + CPU utilization 4.97
CPU_CLK_UNHALTED_-CORE + L2_RQSTS_PF_MISS 4.99

(a) For two features.

Features Mean error
DSB2MITE_SWITCHES_COUNT + io_Read_count + CPU utilization 3.44
DSB2MITE_SWITCHES_COUNT + io_Read-bytes + CPU utilization 3.46
DSB2MITE_SWITCHES_COUNT + io_Read_time + CPU utilization 3.47
OTHER_ASSISTS_AVX_TO_SSE + io_Read_time + CPU utilization 3.54
FP_ASSIST_X87_INPUT + OTHER_ASSISTS_AVX_TO_SSE + CPU utilization 3.64
OTHER_ASSISTS_AVX_TO_SSE + io_Read_count + CPU utilization 3.64
OTHER_ASSISTS_AVX_TO_SSE + RESOURCE_STALLS_LB + CPU utilization 3.65
DSB_FILL_EXCEED DSB_LINES + OTHER_ASSISTS_AVX_TO_SSE + CPU utilization 3.68

(b) For 3 features.

Table 12: Best models using the Nolperf training set and not using any sensor or RAPL counters.

5. Summary and Conclusions

In this paper, we applied the statistical concepts of correlation, the Kolmogorov-Smirnov test and prin-
cipal component analysis (PCA) to investigate hardware and software features. This allowed us to compare
the inherent structure of two data sets used for training and validation. While these tools cannot identify
the cause of abnormal behavior directly, they aid in reducing the number of features that must be checked
by experts for significance during the study of the power consumption in general and development of mod-
els that mimic real power consumption. Applying these techniques to several test cases, we could identify
many issues that are known by experts a priori and also some interesting behavior of the hardware coun-
ters. Therewith, these techniques can help to verify assumptions and reveal significant characteristics of
selected outliers. Using PCA, we could automatically identify interesting measurements, as for the linpack
benchmark, and assess the similarity of our benchmarks. We also demonstrate that a small combinations of
some of hardware counters and resource utilization metrics can provide fairly good estimations of the power
consumption. In the end, an on-line model computing total energy would avoid the use of complex and/or
expensive wattmeters on large-scale platforms, and would provide feedback of energy consumptions to de-
velopers in order to reduce energy consumption. This, indeed, could be an advantage in the development
of light power models, that need to be re-computed on-line in different power-aware software, such as green
schedulers at operating system and facility scales.

As future work, we aim to build up general power models using the advanced set of statistical methods
leveraged in this work. Furthermore, we plan to reduce the interval time and utilize intra-node power
measurement to avoid fluctuations of the power supply unit. Also, we seek to improve our benchmark
suite by adding further application kernels, and to extend our set of target platforms. Finally, we aim to
automatically determine their (dis)similarities, with respect to hardware and software features.

Acknowledgements

This work was supported by the EU Project FP7 318793 “EXA2GREEN” and the German Climate
Computing Center (DKRZ).

References

[1] Steve Ashby, Pete Beckman, Jackie Chen, Phil Colella, Bill Collins, Dona Crawford, Jack Dongarra, Doug Kothe, Rusty
Lusk, Paul Messina, and Others. The opportunities and challenges of exascale computing. Summary report of the advanced
scientific computing advisory committee (ASCAC) subcommittee at the US Department of Energy Office of Science, 2010.

17

17/19

[2

[7

(8]

(9]

(10]

(11]

12
13
[14]
[15]

(16]

(17]

(18]

(19]

20]

(21]

22]

23]

[24]
[25]

[26]
27]

John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing technology challenges. In Proceedings of the 9th
International Conference on High Performance Computing for Computational Science, VECPAR’10, pages 1-25, Berlin,
Heidelberg, 2011. Springer-Verlag.

Philipp Gschwandtner, Michael Knobloch, Bernd Mohr, Dirk Pleiter, and Thomas Fahringer. Modeling CPU energy
consumption of HPC applications on the IBM Power7. In Parallel, Distributed and Network-Based Processing (PDP),
22nd Euromicro International Conference on, pages 536-543. IEEE, 2014.

M. Jarus, A. Oleksiak, T. Piontek, and J. Wglarz. Runtime power usage estimation of HPC servers for various classes of
real-life applications. Future Generation Computer Systems, 36(0):299 — 310, 2014.

Van Bui, Boyana Norris, Kevin Huck, Lois Curfman Mclnnes, Li Li, Oscar Hernandez, and Barbara Chapman. A
component infrastructure for performance and power modeling of parallel scientific applications. In Proceedings of the
compFrame/HPC-GECO Workshop on Component Based High Performance, CBHPC ’08, pages 6:1-6:11, New York,
NY, USA, 2008. ACM.

Manuel F. Dolz, Francisco D. Igual, Thomas Ludwig, Luis Pi nuel, and Enrique S. Quintana-Orti. Balancing task- and
data-level parallelism to improve performance and energy consumption of matrix computations on the Intel Xeon Phi.
Computers & Electrical Engineering, 2015.

Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A comparison of high-level full-system power
models. In Proceedings of the Conference on Power Aware Computing and Systems, HotPower’08. USENIX Association,
2008.

Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard Ayguade. Decomposable and respon-
sive power models for multicore processors using performance counters. In Proceedings of the 24th ACM International
Conference on Supercomputing, ICS 10, New York, NY, USA, 2010. ACM.

Yu Xiao, R. Bhaumik, Zhirong Yang, M. Siekkinen, P. Savolainen, and A. Yla-Jaaski. A system-level model for runtime
power estimation on mobile devices. In Green Computing and Communications (GreenCom), IEEE/ACM Int’l Conference
on Cyber, Physical and Social Computing (CPSCom), Dec 2010.

Li Shang and N.K. Jha. High-level power modeling of CPLDS and FPGAS. In Computer Design. International Conference
on, pages 46-51, 2001.

John C McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan Kuppuswamy, Alex C Snoeren, and Ra-
jesh K Gupta. Evaluating the effectiveness of model-based power characterization. In USENIX Annual Technical Conf,
volume 20, 2011.

Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W. Clark. Formal online methods for voltage/frequency control
in multiple clock domain microprocessors. SIGARCH Computer Architecture News, 32(5):248-259, October 2004.

Q. Wu, M. Martonosi, D.W. Clark, V.J. Reddi, D. Connors, Y. Wu, J. Lee, and D. Brooks. Dynamic-compiler-driven
control for microprocessor energy and performance. Micro, IEEE, 26(1):119-129, Jan 2006.

Bruno Diniz, Dorgival Guedes, Wagner Meira, Jr., and Ricardo Bianchini. Limiting the power consumption of main
memory. SIGARCH Computer Architecture News, 35(2):290-301, June 2007.

Enrique V. Carrera, Eduardo Pinheiro, and Ricardo Bianchini. Conserving disk energy in network servers. In Proceedings
of the 17th Annual International Conference on Supercomputing, ICS 03, pages 86-97, New York, NY, USA, 2003. ACM.
Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret Martonosi. An analysis of efficient
multi-core global power management policies: Maximizing performance for a given power budget. In Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 39, pages 347-358, Washington, DC,
USA, 2006. IEEE Computer Society.

Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. Online power-
performance adaptation of multithreaded programs using hardware event-based prediction. In Proceedings of the 20th
Annual Intl. Conference on Supercomputing, ICS 06, New York, NY, USA, 2006. ACM.

Rong Ge, Xizhou Feng, and K.W. Cameron. Performance-constrained distributed DVS scheduling for scientific applications
on power-aware clusters. In Supercomputing. Proceedings of the ACM/IEEE SC Conference, Nov 2005.

Ankush Varma, Brinda Ganesh, Mainak Sen, Suchismita Roy Choudhury, Lakshmi Srinivasan, and Bruce Jacob. A
control-theoretic approach to dynamic voltage scheduling. In Proceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, CASES ’03, New York, NY, USA, 2003. ACM.

Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S. Nikolopoulos, Bronis R. de Supinski, and Martin
Schulz. Prediction models for multi-dimensional power-performance optimization on many cores. In Proceedings of the
17th International Conference on Parallel Architectures and Compilation Techniques, PACT ’08, pages 250-259, New
York, NY, USA, 2008. ACM.

H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. RAPL: memory power estimation and capping. In
ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED), pages 189-194, 2010.

R. Jotwani, S. Sundaram, S. Kosonocky, A. Schaefer, V. Andrade, G. Constant, A. Novak, and S. Naffziger. An x86-64
core implemented in 32nm SOI CMOS. In 2010 IEEE International Solid-State Circuits Conference - (ISSCC), pages
106-107, Feb 2010.

R. X. Arroyo, R. J. Harrington, S. P. Hartman, and T. Nguyen. IBM Power7 Systems. IBM J. Res. Dev., 55(3):220-232,
May 2011.

NVIDIA. NVML Reference Manual, 2013.

Ravi A Giri and Anand Vanchi. Increasing data center efficiency with server power measurements. Intel Information
Technology. IT@ Intel White Paper, 2010.

Ram Gnanadesikan. Methods for statistical data analysis of multivariate observations. John Wiley & Sons, 2011.

A Onwuegbuzie, Larry Daniel, and N Leech. Pearson product-moment correlation coefficient. Encyclopedia of measurement

18

18/19

(28]

29]

(30]
(31]
(32]

(33]

and statistics, pages 751-756, 2007.

ZES ZIMMER Electronic Systems GmbH. LMG450 - Power Analyzer. http://www.zes.com/en/Products/
Precision-Power-Analyzer/LMG450.

M. Barreda, S. Barrachina, S. Cataldn, M. F. Dolz, G. Fabregat, R. Mayo, and E. S. Quintana-Orti. A framework for power-
performance analysis of parallel scientific applications. In Third Int. Conference on Smart Grids, Green Communications
and IT Energy-aware Technologies — Energy 2013, 2013.

M. Barreda, S. Cataldn, M. F. Dolz, R. Mayo, and E. S. Quintana-Orti. Automatic detection of power bottlenecks in
parallel scientific applications. Computer Science - Research and Development, 29(3-4):221-229, 2014.

Jack Dongarra. The linpack benchmark: An explanation. In Proceedings of the 1st International Conference on Super-
computing, pages 456-474, London, UK, UK, 1988. Springer-Verlag.

Ian T Young. Proof without prejudice: use of the kolmogorov-smirnov test for the analysis of histograms from flow systems
and other sources. Journal of Histochemistry & Cytochemastry, 25(7):935-941, 1977.

Tan Jolliffe. Principal component analysis. Wiley Online Library, 2002.

19

19/19

