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Abstract. Many scientific applications are limited by the performance
offered by parallel file systems. SSD based burst buffers provide signif-
icant better performance than HDD backed storage but at the expense
of capacity. Clearly, achieving wire-speed of the interconnect and pre-
dictable low latency I/O is the holy grail of storage. In-memory storage
promises to provide optimal performance exceeding SSD based solutions.
Kove®’s XPD® offers pooled memory for cluster systems. This remote
memory is asynchronously backed up to storage devices of the XPDs and
considered to be non-volatile. Albeit the system offers various APIs to
access this memory such as treating it as a block device, it does not allow
to expose it as file system that offers POSIX or MPI-IO semantics.

In this paper, we 1) describe the XPD-MPIIO-driver which supports the
scale-out architecture of the XPDs. This MPI-agnostic driver enables
high-level libraries to utilize the XPD’s memory as storage. 2) A thorough
performance evaluation of the XPD is conducted. This includes scale-
out testing of the infrastructure and ,metadata“ operations but also
performance variability.

We show that the driver and storage architecture is able to nearly sat-
urate wire-speed of Infiniband (60+ GiB/s with 14 FDR links) while
providing low latency and little performance variability.
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1 Introduction

In an alternative storage architecture, a burst buffer [1,2] is placed between com-
pute nodes and the storage. Acting as an intermediate storage tier, it’s goal is
to catch the I/O peaks from the compute nodes. Therefore, it provides a low
latency and high bandwidth to the compute nodes, but also utilizes the backend
storage by streaming data constantly at a lower bandwidth.

In-memory systems, like the Kove® XPD® [3], provide better latency, en-
durance and availability as flash chips. Theoretically, the address space of the
XPD could be used to deploy a parallel file system, but performance would be
limited by the POSIX semantics. The relaxed MPI-IO semantics would enable
lock-free access. Since many of the current MPI-IO implementation are opti-
mized for the conventional storage, we believe a in-memory MPI-IO driver for
pooled memory deserves a thorough analysis.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-67630-2_48
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Our contributions are: 1) we provide an MPI-IO implementation for the
pooled memory of the XPD 2) we investigate the performance of the developed
MPI-IO driver. While the large and scale-out storage provided by the XPD is
valuable by itself, the driver can be considered as an intermediate step towards
a burst buffer solution.

This paper is structured as follows: Section 2 discusses related work, then
Section 3 and 4 describe the used API and MPI-IO implementation, Section 5
and 6 show the test setup and performance results. Finally, the paper is sum-
marized in Section 7.

2 Related Work

Relevant state-of-the-art can be grouped into performance optimization, burst
buffers to speedup I/O and in-memory storage solutions.

Optimization and tuning of file systems and I/O libraries is traditionally an
important but daunting task as many configuration knobs can be considered
in parallel file system servers, clients and the I/O middleware. Without tuning,
typical workloads stay behind the peak-performance by orders of magnitude.
With considerable tuning effort a well fitting problem can yield good results:
[4] reports 50% peak performance with a single 291 TB file. In [5] MPI-IO and
HDF5 were optimized and adapted to each other, improving write bandwidth
by 1.4x to 33x.

Many existing workloads can take benefit of a burst buffer as fast write-
behind cache that transparently migrates data from the fast storage to tradi-
tional parallel file system. Burst buffers rely on flash or NVRAM to support ran-
dom I/O workloads. For flash based SSDs many vendors offer high-performance
storage solutions, for example, DDN Infinite Memory Engine (IME) [6], IBM
FlashSystem [7] and Cray’s DataWarp accelerator [8]. Using comprehensive strate-
gies to utilize flash chips concurrently, these solutions are powerful and robust
to guarantee availability and durability of data for many years.

The integration of Cray DataWarp burst buffer into the NERSC HPC ar-
chitecture [9] increased the I/O performance of Chumbo-Crunch simulator by
2.84x to 5.73x, compared to Lustre. However, for the sake of efficient burst buffer
usage, the serial simulator workflow had to be split into single stages (i.e. simu-
lation, visualization, movie encoding), which then were executed in parallel. The
research group at JSC uses DDN IME burst buffer [10] and GPFS to identify
requirements for the next HPC generation. The main purpose is to accelerate
the I/O performance of the NEST (“NEural Simulation Tool“). The prelimi-
nary IOR experiments show, that I/O performance can be increased upto 20x.
BurstFS [11] uses local NVRAM of compute nodes, instead of dedicated remote
machines. An elaborated communication scheme interconnects the distributed
NVRAM and provides a contiguous storage space. This storage is allocated at
beginning and exists for the lifetime of the job. In the experiments, BurstFS
outperforms OrangeFS and PLFS by several times.
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In [12], a user-level InfiniBand-based file system is designed as intermediate
layer between compute nodes and parallel file system. With SSDs and FDR
Infiniband, they achieve on one server a throughput of 2 GB/s and 3 GB/s for
write and read, respectively.

The usage of DRAM for storing intermediate data is not new and ramdrives
have been used in MSDOS and Linux (with tmpfs) for decades. However, of-
fered RAM storage was used as temporary local storage and not durable and
usually not accessible from remote nodes. Exporting tmpfs storage via parallel
file systems has been used mainly for performance evaluation but without dura-
bility guarantees. Wickberg and Carothers introduced the RAMDISK Storage
Accelerator [13] for HPC applications that by flushes data to a backend. It con-
sists of a set of dedicated nodes that offer in-memory scratch space. Jobs can
use the storage to prefetch input data prior job execution or as write-behind
cache to speedup I/O. A prototype with a PVFS-based RAMDISK improved
performance of 2048 processes compared to GPFS (100 MB/s vs. 36 MB/s for
writes). Burst-mem [14] provides a burst buffer with write-behind capabilities
by extending Memcached [15]. Experiments show that the ingress performance
grows up to 100 GB/s with 128 BurstMem servers. In the field of big data, in-
memory data management and processing has become popular with Spark [16].
Now there are many software packages providing storage management and com-
pute engines [17].

The Kove XPD [3] is a robust scale-out pooled memory solution that allows to
aggregate multiple Infiniband links and devices into one big virtual address space
that can be dynamically partitioned. Internally, the Kove provides persistency
by periodically flushing memory with a SATA RAID. Due to the performance
differences, the process comes with a delay, but the solution is connected to
a UPS to ensure that data becomes durable in case of a power outage. While
providing many interfaces, the XPD does not offer a shared storage that can be
utilized from multiple nodes concurrently.

3 XPD KDSA API

The XPD KDSA API is a low-level API that allows to send and receive data us-
ing write/read calls by utilizing RDMA. Data can be transferred synchronously
or asynchronously, additionally, memory can be pre-registered for use with the
Infiniband HCA. Since registration of memory is time consuming, for unregis-
tered memory regions, the system may either use an internal (pre-registered)
buffer and copy the user’s data to the buffer, or for larger accesses it registers
the memory, performs an RDMA data transfer and then unregisters the memory.

To address an XPD volume as a virtual address space, the XPD uses a con-
nection specifier in the form: <local_address>/<server>.<link>:<volume ID>.
Multiple volumes and client or server links can be aggregated by adding them
with a 4, data is then striped across these volumes/links. Similar to parallel file
systems, this allows to scale the number of connections with the requirements.
Upon connecting to an XPD, a client spawns a thread per volume to drive the
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I/0, flags can control its behavior. To improve latency, this thread can use spin
locks to wait for requests and transfer the data or it conserves CPU time by
only becoming active upon events. The latter option is chosen as default for our
driver.

4 XPD-MPIIO-Driver

The driver® is implemented as a shared library and usable with any MPI. It can
be selected at startup of an application using LD_PRELOAD with the shared
library. All implemented routines check the file name for the prefix “xpd:”. With-
out the prefix, they route the accesses to the underlying MPI. Thus, files can be
selectively stored on XPD volumes.

The file driver implements important functions utilizing the relaxed consis-
tency semantics offered by MPI-IO: MPI_File_open, close, delete, get_position,
get _size, preallocate, read_at, write_at, read_at_all, write_at_all, read, write, seek,
set_size, set_view and sync. Collective read/write are calling the independent
counter part. The selection is inspired by the needs of HDF5 and IOR. Note
that the driver does not cache any I/O on the client side.

The implementation comes with a few limitations: Since we do not know the
memory regions, the KDSA calls for unregistered memory are used implying
overhead as described above. During the open/close the Infiniband connections
to the XPD’s are established and destroyed. This causes additional overhead but
offers the freedom to choose the volumes on a file basis. Partial support for file
views as needed by NetCDF4/HDFS5 is provided.

Internally, the file driver uses the shared memory space provided by one or
multiple XPD volumes. It records the actual file size at the beginning of this
memory region but cannot grow beyond the aggregated size of the volumes.
Each process tracks its view of the file size and exchanges this information upon
file close or flush as needed by MPI-IO semantics. The data space is not initial-
ized with zeros, which is an issue if files are written in a sparse format. Since for
many use cases, the file is completely overwrite, this is not a show stopper — for
instance, with fill-values, NetCDF/HDF5 initializes the data regions. A format-
ting tool is contained in the repository that initializes file size (alternatively call
MPI file_delete()) or completely zeroes memory regions.

5 Test Setup

5.1 Testsystems

The tests with the XPD were run on Cooley, the visualization cluster of Mira
on ALCF. It provided three XPD’s with a total of 14 FDR connections and is
connected to a GPFS file system. Each node is equipped with one FDR HCA.

! The code is available as open source.
http://github.com/JulianKunkel/XPD-MPIIO-driver
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To investigate the difference between XPD and other state-of-the-art HPC
systems, we run some benchmarks on Cooley’s GPFS and many on DKRZ’s
supercomputer Mistral. Mistral hosts 3000 compute nodes each equipped with
an FDR interconnect and a Lustre storage system with 54 PByte capacity. The
peak transfer rate of the file system we used is 450 GiB/s%. When we conducted
our measurements, the phase 2 storage system was almost unused by other users.

5.2 Benchmarks

As our primary benchmark, IOR [18] is used varying access granularity, processes-
per-node, nodes, XPD connections and access pattern (random and sequential).
In all cases MPI-IO with independent I/O is measured. IOR is used with a trans-
fer size equal to the access granularity and 20 GiB of data per XPD connection
(and volume)3. To synchronize the measurements the inter-phase barriers were
turned on (IOR option -g). For the Lustre benchmarks we were trying to reuse
the XPD parameters wherever possible. Collective buffer was enabled for write
operations smaller than 512 KiB, we configured MPI-IO to use one aggregator
per node and, in all cases the number of stripes was twice as much as the number
of nodes.

Finally, to measure performance of individual operations to investigate vari-
ability, the sequential benchmark io-modelling is used* It uses a high-precision
timer and supports various access patterns on top of the POSIX interface.

6 Evaluation

The goal of our evaluation is to systematically investigate the scaling behavior of
the Kove XPD’s. The following experiments are conducted: 1) scaling clients for
14 connections; 2) scale-out performance on 14 nodes with increasing number of
connections; 3) variability of performance; Additionally, a comparison to DKRZ’s
Lustre system is made and some results are obtained on Cooley’s GPFS system.

Since the storage capacity is rather small (files up to 100 GiB have been
accessed) compared to the speed of the tests, the time for open/close are inves-
tigated explicitly in experiment 4). In average across all conducted experiments,
the time of open/close reduces the reported performance of the XPD by 10%.
However, for production runs, larger files and capacities are assumed, reducing
this overhead. Therefore, the performance reported subsequently in this paper
is reported without the open/close time.

Note that on the XPD sequential and random I/O behave similarly due to
the DRAM storage and, thus, we usually report random performance.

2 nttp://wuw.vidio.org/hpsl/2016/de/dkrz/lustre02

3 The memory capacity of the XPD’s is shared amongst all users, therefore, we had
access to 14 volumes each 20 GiB.

* https://github.com/JulianKunkel/io-modelling
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Fig. 1: Performance overview: varying client node count and PPN. The graph
contains fitting curves for 100 KiB and 1 MiB blocks.

6.1 Scaling the number of clients

In this first experiment, the maximum number of available volumes and IB links
available are used (14).

Figure 1 shows the achieved performance for 1 to 98 client nodes and 1 to
12 processes per node (performance between 3 and 12 PPN is between the mea-
surements). Under optimal conditions, the performance should increase linearly
from 1 to 14 nodes as each is equipped with one IB FDR HCA and then it should
saturate the network. Assuming roughly 6 GiB/s throughput for the FDR link,
84 GiB/s of performance should be observable.

Observations: 1) read/write behave mostly symmetrically, i.e., good read
performance implies good write performance; 2) performance increases nearly
with the number of client nodes and then saturates, but with PPN=1 it scales
beyond 14 client nodes; 3) for small access granularities, the workload is domi-
nated by the latency of IB and the compute overhead, thus, it improves beyond
14 client nodes and using more PPN; 4) for large access granularities, a high
percentage of peak is achieved quickly. Overall, 14 nodes with 12 PPN saturate
at least 50% of the available network throughput and 24 clients reach almost
peak; 5) performance of 100 KByte accesses is higher than for 1 MiB in many
cases. This is due to the pre-registered memory region inside the KDSA library.
This buffer is used for small accesses but not for 1 MiB. Therefore, the overhead
for memory registration is added which slows down the I/0.
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Fig.2: Read performance with variable connections and PPN. Isolines for mul-
tiples of 5000 MiB/s are shown.

6.2 Scale-out with multiple connections

To show the scale-out behavior, the performance when varying PPN and the
number of XPD connections has been measured for the fixed configuration of 14
client nodes (that should theoretically be able to saturate all XPD connections).
Figure 2 shows a heat-map for different block granularities. This gives us also
another perspective to investigate scaling behavior for variable PPN. In the
best case, performance increases linearly with the number of connections and is
constantly at a high level for variable numbers of PPN.

Observations: 1) for large accesses, the performance isolines show that
about 25 GB/s are achievable per connection up to 5 connections regardless of
the PPN; 2) starting with 6 connections, multiple PPN are needed to drive I/0
and the scaling is not optimally any more. Still, as seen in Figure 1, more PPNs
and about 24 client nodes would increase throughput to 60 GiB/s; 3) smaller
granularities also yield good performance with PPN=1, but the hill like struc-
ture shows that multiple PPNs are necessary to drive the latency bound I/O.
Overall, the system scale well when increasing the number of XPD connections
and servers.

6.3 Performance Variability

The variability of access time has been investigated. When re-running an ex-
periment, the overall performance of the repeated run should exhibit a similar
performance behavior. Since each experiment takes at least several seconds to
complete, we additionally investigated the runtime of repeatedly invoking the
same I/0 call.

A comparison of the runtime of the three repeats for each individual config-
uration (=MAT) reveals the variability when re-running an experiment. On
the XPD, the arithmetic mean value of variability is 1.23% for read and 1.78%
for write accesses, albeit the mean runtime of an experiment was only about
10s. Thus, on average, when repeating an experiment, performance can be 1.8%
worse than in the best case. Across the experiments, Lustre varies about 5% for
read and write although its runtime is longer and, thus, less variation is to be
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Fig. 3: Density of the variability range across all conducted experiments (span
across three repeats each).

Size| Type Read Write

XPD| GPFS|Lustre|| XPD|GPFS|Lustre

16 KiB| seq|| 707.8| 659.8| 522.0|| 709.8| 533.0| 778.0
100k| seq|{1653.8{1139.2|1082.2||1773.3| 611.7| 927.7

1 MiB| seq||1837.3/1062.5| 996.2(|1768.2| 629.8| 965.9

10 MiB| seq||3401.7| 928.3| 994.3|/3274.3| 742.3| 916.9

16 KiB| rnd|| 676.8 1.2 1.5|| 600.4| 71.7| 20.6
100k| rnd||1538.5 4.7 9.2]|1636.1| 346.7| 80.6
1 MiB| rnd||2052.6| 29.6] 49.2{{1967.1| 184.6| 157.6
10 MiB| rnd||3456.6| 301.2| 277.6||3335.6| 430.0| 352.1
Table 1: Variability test: mean performance in MiB/s over the runtime

expected. The density (similar to a fine-grained histogram) for all experiments
is shown in Figure 3.

Performance variability with individual I/Os. This experiment is con-
ducted measuring timing of 10,000 individual I/Os with a single process on
Cooley’s XPD and GPFS, and on DKRZ’s Lustre. The density plots of measur-
ing these results is shown in Figure 4. This graph shows the qualitative difference
between the file systems. The mean performance for each experiment is shown
in Table 1, i.e., the average performance when timing a complete run; naturally,
a few very slow operations lead to a significant reduced mean performance.
Observations: As suggested by comparing application runs, the XPD’s per-
formance does not vary much between individual I/Os, i.e., the observed runtime
always forms a group. While some reads in the optimized sequential I/O can per-
form as fast as on the XPD — i.e., with wire speed, most operations do not and,
obviously, random I/O from parallel file systems is significantly slower. Actually,
for sequential reads, in combination with caching, the read-ahead and write-
behind strategy of Lustre and GPFS can result in faster performance than the
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XPD for individual operations. Still, the mean performance over the complete
experiment, i.e., when doing all 10,000 operations is faster in all cases except for
sequential write of 16 KiB of data on Lustre. The reason is the reduced perfor-
mance variability on the XPD.

6.4 Additional Experiments

Besides, we investigated open/close behavior of XPDs, and could create a linear
model for prediction of open/close times. For example, our model says that for
NN=500 nodes and PPN=12 an open time will be about 2.5 seconds. On Lustre
using the same parameters we observed open times around 0.7 seconds.

Furthermore, we measured performance of NetCDF4 on XPDs, GPFS and
Lustre using collective, independent, and chunked I/O modes. Our main obser-
vation in these experiments was that XPDs are insensitive to the different I/O
modes, whereas in experiments with GPFS and Lustre we could see an irregular
I/O behavior.

7 Summary

Storage on XPDs significantly outperforms our Lustre system in the small-blocks
random I/O benchmarks. In this case and in contrast to XPD, the increasing
number of nodes and processes accessing the storage don’t provided the desired
scaling effect. The performance benefit of the XPD is smaller when we use large
access granularities. While we have not exploited all available tuning knobs for
Lustre and GPFS, it becomes apparent that the MPI-IO driver on top of the
XPD outperforms GPFS and Lustre. Also, with our MPI-IO driver, the need
to tune too many knobs vanishes, users can rely on the performance without
changing one of many parameters as needed for other file systems. For applica-
tion relevant workloads using NetCDF, XPD is relatively insensitive to various
settings of the I/O method and chunking. It simply scales with the number of
processes and nodes up to a rather predictable throughput of 4 GiB/s per client
node. In particularly, due to the nature of the storage technology, the I/O vari-
ance is much less than for other file systems leading to much better performance
predictability. From these results, it appears that this MPI-IO driver supports
I/O heavy workloads. A burst buffer system equipped with a set of XPDs has
potential for improvement of I/O performance by several times.
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