

Computers, Materials & Continua CMC, vol.??, no.??, pp.??, 2020

CMC. doi:10.32604/cmc.2020.xxxxx www.techscience.com/cmc

Parallelization and I/O Performance Optimization of a Global

Nonhydrostatic Dynamical Core using MPI

Tiejun Wang1, Liu Zhuang2, Julian M. Kunkel3, Shu Xiao1 and Changming Zhao1, *

Abstract: The Global‐Regional Integrated forecast SysTem (GRIST) is the next-

generation weather and climate integrated model dynamic framework developed by

Chinese Academy of Meteorological Sciences. In this paper, we present several changes

made to the global nonhydrostatic dynamical (GND) core, which is part of the ongoing

prototype of GRIST. The changes leveraging MPI and PnetCDF techniques were targeted

at the parallelization and performance optimization to the original serial GND core.

Meanwhile, some sophisticated data structures and interfaces were designed to adjust

flexibly the size of boundary and halo domains according to the variable accuracy in

parallel context. In addition, the I/O performance of PnetCDF decreases as the number of

MPI processes increases in our experimental environment. Especially when the number

exceeds 6000, it caused system-wide outages (SWO). Thus, a grouping solution was

proposed to overcome that issue. Several experiments were carried out on the

supercomputing platform based on Intel x86 CPUs in the National Supercomputing

Center in Wuxi. The results demonstrated that the parallel GND core based on grouping

solution achieves good strong scalability and improves the performance significantly, as

well as avoiding the SWOs.

Keywords: MPI, parallelization, performance optimization, global nonhydrostatic

dynamical core.

1 Introduction

Nowadays, several dynamical core models, such as DYNAMICO [Dubos, Dubey, Tort et

al. (2015)], FVM [Smolarkiewicz, Kühnlein and Grabowski (2017)], GEM [Girard,

Plante, Desgagné et al. (2014)] and ICON [Zängl, Reinert, Rípodas et al. (2015)], have

been developed as a fundamental component of global atmospheric modeling systems.

The study of dynamical core models has become increasingly important for both

numerical weather prediction and climate studies. The Global‐Regional Integrated

forecast SysTem (GRIST) is the next-generation weather and climate integrated model

dynamic framework and aiming to extend to be a fully-fledged atmospheric general

1 School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China.

2 National Supercomputing Center in Wuxi, Jiangsu 214072, China.

3 Department of Computer Science, University of Reading, Berkshire RG6 6UR, United Kingdom. Email:

juliankunkel@googlemail.com

*Corresponding Author: Changming Zhao. Email: zcm84@cuit.edu.cn.

?? CMC, vol.?, no.?, pp.??, 2020

circulation model [Yu, Zhang, Wang et al. (2019)]. A prototype of GRIST is being

developed by Chinese Academy of Meteorological Sciences and composed of two parts:

one part is a global shallow water modeling (SWM) framework [Zhang (2018)], which

was developed on an unstructured Voronoi‐Delaunay grid and tested against various

two‐dimensional (2D) benchmarks by isolating most horizontal components of a 3D

model; the other part is a new global nonhydrostatic dynamical (GND) core [Zhang, Li,

Yu et al. (2019)] for supporting multiscale modeling of the atmosphere and enabling

resolve more fine-scale fluid structures without a uniform increase in the global

resolution. The GND core is based on unstructured mesh which allows a flexible switch

between the quasi‐uniform and VR configurations by altering the underlying mesh

descriptor information. In this paper, we focus on the parallelization and performance

optimization to GND core as the simulation to 3D model is more significant than 2D

model in a weather and climate system.

This paper is structured as follows: Section 2 discusses the background of our research

work, then Section 3 and 4 describe the parallel GND core implementation, Section 5

shows the experiments environment and analyze the performance results. Finally, the

paper is summarized in Section 6.

2 Background

2.1 The original serial GND core

Normally, running the original serial GND core is a sequence of three parts: reading,

computing and writing. Firstly, all the one-dimension and two-dimension data describing

the grid structure and other initial information stored in data files are read into the

memory of computing nodes to initialize the model. Then, the model is run step by step

according to the initial information to simulate the atmospheric motion to produce

predictions on the computing platform. Finally, all the predictions in memory are dumped

out to storage as data files which could be used to support further computing.

Table 1: Time consumption in serial running for different resolution G7 and G8

Resolution
Average Reading

Time(s)

Average Writing

Time(s)

Average Computing

Time(s)

G7 1.1 6.8 5220.2

G8 2.4 27.1 31335.5

The main goal of optimization is to reduce the running time as well as ensuring results

correct. Analyzing the running procedure, massive I/O operations are involved in the first

and third parts where huge amount of data will be read from and write to data files with

parallel netCDF (PnetCDF) [Gao, Liao, Choudhary et al. (2009)], and considerable

computing operations are included in the second part to simulate the atmospheric motion

in 24 hours using the hydrostatic solver (HDC) or the nonhydrostatic solver (NDC). The

original serial model could be run in single node with 2 Intel CPUs and 128G memory.

Analyzing the running results as shown in Tab. 1, the main body of time consumption is

the computing time where the reading and writing time for I/O operations only accounts

for a negligible proportion. Furthermore, the simulation for problem size greater than G8

Manuscript Format Template for Publishing in Tech Science Press ??

is not runnable due to the memory limitation of single node. In order to reduce the total

running time and improve the ability to deal with high resolutions, we applied the

efficient large-scale parallel computing based on the latest high-performance computing

platform to optimize the GND core.

2.2 Unstructured mesh

The GND core is based on unstructured mesh which allows a flexible switch between the

quasi‐uniform and variable‐resolution (VR) configurations by altering the underlying

mesh descriptor information. Edge points, triangle points and hexagon points are three

kinds of points on the GND core mesh, where each point can perceive the nearest

neighbors. The mesh is essentially the unstructured Voronoi-Delaunay grid. At the

beginning, quasi-uniformly distributed points are generated on the sphere as the typical

icosahedral hexagonal-pentagonal (IHP) shape. Changing the mesh descriptor

information could modify the distribution of triangle and hexagon points on the

unstructured mesh to affect the mesh resolution.

One-level finer grids are generated by bisecting each triangular edge of the former

coarser grid. The generated resolution of this mesh is referred to as grid level Gn, where n

denotes the number of bisections. In the implement of GND core, the centroidal Voronoi

constraint method [Du, Gunzburger and Ju (2003); Ringler, Ju and Gunzburger (2008)] is

used to optimize the subdivided IHP mesh. As the scale of problem size increases, the

time and memory consumption will escalate so that the mesh resolution that could be

handled in single node is limited by the hardware resources. Fortunately, parallelization

can not only reduce the total running time, but also increase the scale of problems that

system could deal with.

2.3 NetCDF and PnetCDF

Network common data format (netCDF) is widely used in the field of meteorological

research and applications for storing and retrieving data in the form of arrays. Actually, it

is a library of data access functions which support a view of data as a collection of self-

describing and portable objects. Starting with version 4.0, the netCDF API supports the

use of the HDF5 data format [Folk, Heber, Koziol et al. (2011)], which allows netCDF

users to create HDF5 files with benefits that are not available with the netCDF format,

such as much larger files and multiple unlimited dimensions. Unfortunately, as lacking

parallel access mechanism in the original design of netCDF interface, the capability of

providing services to parallel applications is significantly limited. In particular,

concurrently writing to a netCDF file (NC file) is not supported. Therefore, serial

accessing to a NC file through only one of multiple processes could easily become a

performance bottleneck as show in Fig. 1 (a).

Li et al. introduced a parallel interface for writing and reading data stored in NC files [Li,

Liao, Choudhary et al. (2003)], and PnetCDF interface improves the parallel I/O

performance significantly as well as keeps the convenience with minimal changes to

original netCDF interface as shown in Fig. 1 (b). MPI-IO is used in PnetCDF interface to

achieve the parallel I/O features. Migrating the GND core implementation from netCDF

to PnetCDF could provide the capability of accessing single dataset with multiple

?? CMC, vol.?, no.?, pp.??, 2020

processes concurrently.

Parallel File System

P0 P1 P2 P3 ……

netCDF

Parallel File System

P0 P1 P2 P3 ……

Parallel netCDF

(a) Using netCDF interface to access single
file through one process

(b) Using parallel netCDF interface to access a single
file collectively or non-collectively

Figure 1: Accessing single NC file through netCDF interface and PnetCDF interface in

parallel applications

3 Parallel implement of GND core

3.1 Domain decomposition

The main objective of parallelization is to allow multiple processes to compute

simultaneously while ensuring the results correct. Many applications in parallel

computing use domain decomposition to distribute the computing tasks among different

processing elements.

In this paper, we adopted METIS [LaSalle, Patwary, Satish et al. (2015)] for graph

partitioning to obtain a domain decomposition leading to a good balancing of both the

size of domain interiors and the size of interfaces, which was a key point for load

balancing and efficiency in a parallel context. The result of partitioning was that the

whole computing tasks with associated data were split into multiple cells adjacent to each

other. We used home cells (see Fig. 2 (b)) to refer the cells those associated with specific

MPI processes to perform computing. A local stencil was composed of a home cell and

other cells surrounding it as shown in Fig. 2 (a). Those home cells, also known as

computation domains, were composed of an inner domain (light gray region) and a

boundary domain (dark gray regions). The halo domain essentially referred to the

overlapping regions (the stippled regions in Fig. 2 (a)), which referred to the boundary

domains of other cells in local stencils. Combining computation domain and halo domain

formed a full domain (see Fig. 2 (c)). In fact, when the partitioning using METIS was

complete, computation domains were already known to specific MPI processes, but halo

domains not. Therefore, only after obtaining the full domain could an MPI process start

the computing task, which meant that the halo domain had to be updated from neighbor

cells in the local stencil. The operation that a home cell exchanged its boundary domains

with neighbors was called the neighbor exchange or halo exchange. As shown in Fig. 2

(c), halo(1) and halo(2) regions would exchange data with boundary(1) and boundary(2)

regions, respectively.

Manuscript Format Template for Publishing in Tech Science Press ??

(b) A home cell on the hexagonal mesh

for GND core using unstructured mesh

Halo

Domain

Boundary

Domain

Inner

Domain

Halo(2)

Halo(1)

Boundary(1)

Boundary(2)

Computation

Domain

Full

Domain

(c) The composition of a local stencil and the

demonstrations of associated concepts

(a) A local stencil including a home cell

and cells surrounding it.

Figure 2: An illustration of a local stencil on the hexagonal mesh of GND core

3.2 Computing performance improvement

Increasing the numbers of halo and boundary regions could improve the calculation

accuracy, but at the same time it will also increase the load of communication and

calculation. To isolate the implement of communication module, a new structure linked

list was designed as shown in Fig. 3 (a), which allows to flexibly adjust the numbers of

halo and boundary regions according to accuracy requirements without changing to the

communication module. In order to balance the calculation accuracy with communication

and calculation load, the numbers of halo and boundary regions are all set to 2 as shown

in Fig. 2 (c).

In fact, there were two mature techniques, OpenMP and MPI, used to improve computing

performance, and MPI was chosen finally. On the one hand, MPI was required for the

purpose of the GND core running on a cluster platform. On the other hand,

reprogramming of the hotspot functions using OpenMP only obtained little improvement.

Furthermore, according to the computing logic, the whole computing task for

computation domain was split into two separate parts: inner domain computing and

boundary domain computing. The asynchronous communication functions of MPI were

adopted to synchronize the computing for inner domain with the halo exchange between

boundary domains and halo domains, and which further increased parallel scalability. In

order to facilitate the separation of computing and communication, a set of

communication interfaces was also designed as shown in Fig. 3 (b), where interface

exchange_data encapsulated MPI_Isend and MPI_Irecv functions to exchange data with

other processes. Combining multiple data fragments data_i into an exchange_field_list

?? CMC, vol.?, no.?, pp.??, 2020

typed linked list field_head could not only reduce the numbers of communication

requests, but also improve the communication efficiency.

type exchange_field_list

 type(scalar_field), pointer :: field_data

 type(exchange_field_list), pointer :: next => null()

end type exchange_field_list

exchange_data_add(mesh, field_head, data_1)

exchange_data_add(mesh, field_head, data_2)

exchange_data_add(mesh, field_head, data_n)

exchange_data(mesh,field_head)

… Data Preparation

Communication Integration

(a) Structure linked list to flexibly adjust the number of exchanged regions

(b) Communication interfaces to separate computing and communication

Figure 3: Data structure and interfaces designed for halo exchanges

Moreover, according to the principle of data locality, the data was stored in two-

dimensional KM mode, where K was the layer number of the mesh in the vertical

direction and M was the points number in computation domain. That data storage mode

guaranteed that the data in the vertical direction was continuously arranged in the

memory, which could take full advantage of the vectorization of CPU, improve the cache

utilization and reduce time consumption of data processing.

Meanwhile, we reconstructed some data structures of GND core to improve the

performance. For example, halo, inner and boundary domains were abstracted into

global_domain struct to store pointers to other parts and information of triangle and

polygon (hexagon in this paper) together with those vertices and edges. As shown in Fig.

4, original source (left part) adopted vertice_structure struct variable vtx to calculate

divergence where variable vtx belonging to global_domain struct variable mesh included

two members: nnb (number of neighbor nodes) and ed (edges). We converted the indirect

access to the members nnb and ed of struct vtx to the direct access to a one-dimension

array vtx_nnb and a two-dimension array vtx_ed (right part), which reduced the overhead

of indirect indexing.

Figure 4: Reconstructing hotspot code

4 Parallel I/O optimization

In terms of parallel I/O performance, we replaced original netCDF with PnetCDF library.

Then, all the MPI processes could read and write the same NC file simultaneously, which

improved the read and write efficiency as well as reducing memory usage. Unfortunately,

Manuscript Format Template for Publishing in Tech Science Press ??

current PnetCDF does not provide functionality for reading or writing multiple array

variables in a single call, so this limitation may reduce the I/O performance for accessing

a large number of small-sized array variables [Gao, Liao, Choudhary et al. (2009)]. The

following experiment confirmed the speculation about that issue. We designed two data

reading solutions: the non-grouping solution and the grouping solution. In the non-

grouping solution, all the MPI processes accessed the same NC file of size 2G directly

through the PnetCDF interface. In the grouping solution, only the host process (process

number is 0 in the group) was allowed to read the NC file through PnetCDF interface,

and all the other guest processes sent requests to and got data from the host process. The

experimental results shown in Tab. 2 revealed the fact that the time consumption of the

grouping solution was much less than that of the non-grouping solution.

Table 2: Comparation of experimental results

Number of Processes 1 24 48 72 96 110 150

Number of Nodes 1 1 2 3 4 5 7

Time consumption

of non-grouping (s)
1.96

9.80 17.85 21.12 21.80 21.33 23.95

Time consumption

of grouping (s)
1.80 3.02 3.35 3.42 3.43 3.45

Furthermore, according to our experimental results, the reading and writing performance

dropped dramatically when the number of processes exceeded 600. In particular, system-

wide outages (SWO) occurred as calling two functions nfmpi_iget_vara_double and

nfmpi_iput_vara_double with PnetCDF running in non-blocking mode when the number

of MPI processes was more than 6000. In order to overcome SWOs, a grouping parallel

I/O solution was proposed in this paper. Although some overhead would be added and

thereby increasing the running time, the overhead could be negligible when the scale of

the problem reached a certain level. The grouping solution and associated concepts could

be described as follows.

P0 P1 P2 P3 P4 P5group 1

P6 P7 P8 P9 P10 P11group 2

P12 P13 P14 P15 P16 P17group 3

P18 P19 P20 P21 P22 P23group 4

GROUP_COMM

master process

Pn host process

Pm guest process

P0

MPI_COMM_WORLD

Figure 5: Reconstructing hotspot code

Let c be the group size and i be the index of MPI process Pi in global communication

group MPI_COMM_WORLD, then the index j of MPI process Pi in group g could be

?? CMC, vol.?, no.?, pp.??, 2020

defined as Eq. (1) and the process with an index equal to 0 in group would be the host

process of that group.

/

mod

g i c

j i c

=

=
 (1)

Fig. 5 shows an illustration of the grouping solution where there are 24 MPI processes in

communication group MPI_COMM_WORLD and P0 is the master process. In addition,

there are 6 MPI processes in each communication group and P0, P6, P12 and P18 is the host

process of group 1, group 2, group 3 and group 4, respectively. In the grouping solution,

only 4 host process of each group accesses the NC file and other guest processes would

send the access requests to and get requested data from host process. Although this

grouping solution could effectively reduce the concurrent access to NC file, it introduces

the overhead to gather requests and scatter data obtained from NC files.

5 Performance evaluation

To evaluate the performance and scalability of our parallel GND core, we designed some

experiments and compared the results with the original serial GND core. We also

designed a group of experiments with different group sizes in term of the influence of the

group size on the performance. The original GND core was developed in Fortran 90

language and compiled by Intel Fortran Composer XE for Linux 2013 update 4 with -O2

optimization option.

The experiments were run on the commercial auxiliary computing system of national

supercomputing center in Wuxi. This system is a petaflop-scale cluster with 980 compute

nodes. Each compute node has 128 GB of memory shared among its two 2.5 GHz Intel

Xeon E5-2680 v3 processors and each CPU has 12 cores. All the compute nodes are

interconnected by switches and also connected via switches to the multiple I/O nodes

running the GPFS parallel file system. The aggregate disk space is 15 PB and the peak

I/O bandwidth is 14 GB/s. In all the experiments, each MPI process was mapped into a

physical CPU core at runtime, which meant the fact that the maximum number of

processes a single computing node allowed to run is 24. The resolutions in this paper

include G7 (~60 km; 163,842 cells), G8 (~30 km; 655,362 cells) and G9 (~15 km;

2,621,442 cells) as shown in Tab. 3.

Table 3: The parameters and resolution used in different grid levels

Grid Level G7 G8 G9

Cells Number 163,842 655,362 2,621,442

Iteration Steps 288 432 864

Resolution ~60 km ~30 km ~15 km

NC File Size 289.7 MB 1.16 GB 4.63 GB

Manuscript Format Template for Publishing in Tech Science Press ??

5.1 Strong scaling analysis of non-grouping GND core

We applied all the methods mentioned in Section 3 and Section 4 to implement an

optimized GND core supporting parallelization developed in Fortran 90 language. In

order to distinguish from the system obtained by only using the methods descripted in

Section 3 to optimize I/O performance, parallel GND core is used here to refer to the

former and non-grouping GND core refers to the latter.

Due to the limitation of the memory size (128 GB) in computing nodes, original serial

GND core could not handle the problem with resolution higher than G8. Therefore, we

ran the serial GND core for three times to deal with the same data set stored in NC files

for different resolutions G7 and G8, respectively. For comparison purpose, we ran the

parallel GND core for three times to handle the same NC files as well.

Fig. 6 (left) shows the strong scaling test for our optimized non-grouping GND core with

two different resolution G7 and G8. What can be clearly seen in this figure is that the

parallel efficiency gradually decreases as the increasing of the computing resources,

which is caused by the communication overhead. Meanwhile, the strong scaling gets

better as the increasing of problem size. The strong speedup of G8 reaches nearly 256 and

is twice that of G7 at 1024 cores. Specially, there is a sudden drop in parallel efficiency

from 4 cores to 16 cores, and which is driven by the performance bottleneck of a single

computing node where all the tasks (less than 24) were assigned to. In addition, there is

an inflection point on the both speedup curves when the number of processors is 32,

which can be attributed to the additional network communication as the 32 cores have to

be split into two computing nodes. It reveals that reducing unnecessary inter-host

communication is necessary. Therefore, we adjusted the test plan so that the number of

processors participating in the computing is an integer multiple of 24 (the number of CPU

cores in each computing nodes).

Figure 6: Strong scaling test of non-grouping GND core with G7 and G8 (left) and

comparison of average running time under different process numbers with G7, G8 and

G9 (right).

5.2 Average running time analysis of non-grouping GND core

?? CMC, vol.?, no.?, pp.??, 2020

In terms of the relationship between the problem size and the number of processors, we

conducted the following experiments. For three kinds of problem size G7, G8 and G9, we

ran the non-grouping GND core for three times with 240, 480, 720, 960, 1200 and 1440

processors, respectively.

As shown in Tab. 3, if the resolution accuracy increases by one level, the problem size is

expanded by four times. In the vertical direction, the approximate relationship between

the resolution accuracy and the average running time can be seen in Fig. 6 (right). In the

horizontal direction, what we expected is that the average time consumption could be

decrease with the addition of the number of processors. However, the results shown in

Fig. 6 (right) are slightly different. Following the addition of the number of processors,

there has been a slight increase in the average time consumption for G7. Such increasing

in time stems from the fact that too many processors were involved in the small problem

and the extra inter-process communication increased the running time instead. For

resolution G8, the average running times of 1200 and 1440 processors are little higher

than those of less processors. Likewise, the average running time reached a low point of

1200 processors for resolution G9. The reason for rebound at the end of the curve stems

from the communication overhead. Comparing the curves (regardless of rebound part) of

G8 and G9, the slope increases obviously with scaling up the problem size, and which

means that the larger the problem size, the more obvious the performance improvement

with the addition of the number of processors.

5.3 Performance analysis of parallel GND core

In order to optimize I/O performance, a grouping method was proposed in Section 4, and

that grouping method could introduce additional communication overhead in local groups.

Therefore, we carried out a series of experiments to examine the impact of grouping

method and group size on the performance.

Firstly, most experimental results show that introducing grouping method will increase

the average running time. However, as shown in Fig. 7, there are still some exceptions

where grouping method can significantly reduce average running time or is basically the

same as non-grouping, such as running with 480, 720 and 960 processors for G7, 960 and

1200 processors for G8 and 1440 processors for G9. In particular, for running parallel

GND core with 1440 cores for resolution G9, average time consumption is reduced to

one third of non-grouping method as shown in Fig. 7 (c). These results show that

grouping method can definitely improve the performance when suitable processors

number was chosen according the problem size.

In addition to the running time, the reading and writing time used to perform I/O

operations are the focus in our experiments. Actually, the reading time and writing time

mainly refer the execution time of function pull_element_types_full and gcm_output_file,

respectively. For reading data from NC files, the host process gathered all the read

requests from other guest processes in local communication group firstly. After got all the

read requests, those requests were sorted and then combined into one request and that

was sent to underlying PnetCDF interfaces to perform real reading operations. Finally,

the host process scattered the obtained data to other guest processes according to their

requests. For writing data to NC file, a similar process was performed as well.

Manuscript Format Template for Publishing in Tech Science Press ??

Figure 7: Comparison of average running time of parallel GND core with different

number of processors for non-grouping (NG) and different number of processors of each

group

Therefore, the average reading and writing time are mainly composed of execution time

(T1) of PnetCDF interfaces and communication time (T2) of gathering and scattering. To

the smaller problem size G7 and G8, the reduction of time T1 caused by combining

multiple small data requests into bigger data blocks is greater than the increase of T2 with

the increasing problem size, and so the average reading and writing time of parallel GND

core is less than those of non-grouping one as shown in Fig. 8 (a)-(d). In contrast, the

results are just opposite with increasing problem size to G9 as shown in Fig. 8 (e) and (f).

However, it is also obvious that the reading and writing time can be reduced by

increasing the group size, especially for the writing time with group size 36 and 48 in Fig.

8 (b), (d) and (f).

6 Related work

Generally, the process of running an application on a computing system can be abstracted

as obtaining instructions and data from a storage hierarchy, processing the data by

?? CMC, vol.?, no.?, pp.??, 2020

executing instructions in the CPU and writing the results back to the storage. In order to

run massive scientific applications effectively, distributed HPC architectures, shared

memory parallelism (SMP) and distributed big data architectures were deployed to

undertake the workload [Tavara (2019)]. In terms of performance, massive scientific

applications could be divided into computing-sensitive applications and I/O-sensitive

applications. Therefore, optimizing computing efficiency and improving I/O performance

are two main approaches.

Figure 8: Comparison of average reading and writing time of parallel GND core with

different number of processors and different number of processors of each group

To speed up the computing, several parallel algorithms and data structures have been

developed to make full use of the underlying hardware resources to solve problems in

different fields. Codreanu et al. [Codreanu, Dröge, Williams et al. (2016)] show that 10-

fold speedups could be achieved by modifying the input data structure and combining

Manuscript Format Template for Publishing in Tech Science Press ??

memory access in the implement of support vector machine, which could match the

memory access pattern on the platform and provide more the memory throughput.

Moreover, with the rapid development of GPU technology in recent years, GPU

platforms have been gradually adopted to run computing-sensitive applications, thereby

improving operating efficiency. He et al. [He, Bai, Ouyang et al. (2019)] proposed a

parallel cloud-derived wind inversion algorithm based on GPU framework, which takes

advantage of GPU cores to run each iteration and the acceleration ratio of that algorithm

is up to 112.

To improve the performance of I/O intensive applications, reducing the data moving

between CPUs and memory by designing new data structures and optimizing data access

strategies is one of the most common methods. Sarje et al. [Sarje, Song, Jacobsen et al.

(2015)] utilized reducing communication approaches to minimize the data movement

both inter- and intra- nodes, as well as improving cache efficiency by predictive ordering

techniques, which optimized the unstructured mesh-based MPAS-Ocean platform. In

addition, coalescing multiple small non-contiguous I/O requests into fewer large

contiguous ones is another popular technique, known as collective I/O or two-phase I/O

[Rosario, Bordawekar and Choudhary (1993)], which is a well-known parallel I/O

strategy for shared file access. In the collective I/O approach, all the I/O requests

producing from the processes running simultaneously are sent to few processes that were

selected as “aggregators” instead of the underlying parallel file systems, such as Lustre,

PVFS, GPFS. In the communication phase, aggregators collective all the requests,

coalesce them into few sorted ones. In the I/O phase, aggregators wait for the finishing of

real I/O operations and send responses back to all the other processes. Kumar et al.

[Kumar, Vishwanath, Carns et al. (2012)] presented an algorithm to enable a three-phase

scheme, which restructures simulation data into large blocks to further improve the I/O

performance. TAPIOCA [Tessier, Vishwanath and Jeannot (2017)] is an I/O library

based on MPI-IO, which implements an efficient topology-aware two-phase I/O scheme

and effectively reduce the idle time during the communication phase. PnetCDF [Li, Liao,

Choudhary et al. (2003)] is an enhanced netCDF library, which takes advantage of the

underlying MPI-IO to support efficient data storage and access as well as a new parallel

interface for reading and writing netCDF dataset directly.

7 Conclusion

This study has presented the parallel implementation and optimization to a new global

nonhydrostatic dynamical (GND) core running on the commercial auxiliary computing

system of national supercomputing center in Wuxi, which is a supercomputing platform

based on Intel x86 CPUs. The GND core is part of the prototype of a Global‐Regional

Integrated forecast SysTem (GRIST), and the purpose of which is to develop a new fully-

fledged atmospheric general circulation model.

Utilizing MPI technique, parallelization of the GND core was implemented by

introducing boundary and halo domains, and meanwhile some sophisticated data

structures and interfaces were designed to improve the performance as well as supporting

modification to the size of boundary and halo domains according to the variable accuracy.

Moreover, a grouping solution was proposed in this paper to improve the I/O

?? CMC, vol.?, no.?, pp.??, 2020

performance and to avoid resulting SWOs when the number of MPI processes is more

than 6000. The results demonstrate our approach has a better strong scaling and improves

the performance of GND core significantly.

Acknowledgement: This work was supported by the National Key Research and

Development Program of China under Grant No. 2017YFC1502203.

Funding Statement: The author(s) received no specific funding for this study.

References

Codreanu, V.; Dröge, B.; Williams, D.; Yasar, B.; Yang, P. et al. (2016): Evaluating

automatically parallelized versions of the support vector machine. Concurrency and

Computation: Practice and Experience, vol. 28, no. 7, pp. 2274-2294.

Du, Q.; Gunzburger, M. D.; Ju, L. (2003): Constrained centroidal voronoi tessellations

for surfaces. SIAM Journal on Scientific Computing, vol. 24, no. 5, pp. 1488-1506.

Dubos, T.; Dubey, S.; Tort, M.; Mittal, R.; Meurdesoif, Y. et al. (2015): Dynamico-

1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility.

Geosci. Model Dev., vol. 8, no. 10, pp. 3131-3150.

Folk, M.; Heber, G.; Koziol, Q.; Pourmal, E.; Robinson, D. (2011): An overview of

the hdf5 technology suite and its applications. Proceedings of the EDBT/ICDT 2011

Workshop on Array Databases, Uppsala, Sweden, Association for Computing Machinery,

pp. 36-47.

Gao, K.; Liao, W.; Choudhary, A.; Ross, R.; Latham, R. (2009): Combining i/o

operations for multiple array variables in parallel netcdf. 2009 IEEE International

Conference on Cluster Computing and Workshops, pp. 1-10.

Girard, C.; Plante, A.; Desgagné, M.; Cowan, R. M.; Côté, J. et al. (2014): Staggered

vertical discretization of the canadian environmental multiscale (gem) model using a

coordinate of the log-hydrostatic-pressure type. Monthly Weather Review, vol. 142, no. 3,

pp. 1183-1196.

He, L.; Bai, H.; Ouyang, D.; Wang, C.; Wang, C. et al. (2019): Satellite cloud-derived

wind inversion algorithm using gpu. Computers, Materials & Continua, vol. 60, no. 2, pp.

599-613.

Kumar, S.; Vishwanath, V.; Carns, P.; Levine, J. A.; Latham, R. et al. (2012):

Efficient data restructuring and aggregation for i/o acceleration in pidx. SC '12:

Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, pp. 1-11.

LaSalle, D.; Patwary, M. M. A.; Satish, N.; Sundaram, N.; Dubey, P. et al. (2015):

Improving graph partitioning for modern graphs and architectures. Proceedings of the 5th

Workshop on Irregular Applications: Architectures and Algorithms, Austin, Texas, ACM,

pp. 1-4.

Li, J.; Liao, W. k.; Choudhary, A.; Ross, R.; Thakur, R. et al. (2003): Parallel netcdf:

A high-performance scientific i/o interface. SC '03: Proceedings of the 2003 ACM/IEEE

Conference on Supercomputing, pp. 39-39.

Manuscript Format Template for Publishing in Tech Science Press ??

Ringler, T.; Ju, L.; Gunzburger, M. (2008): A multiresolution method for climate

system modeling: Application of spherical centroidal voronoi tessellations. Ocean

Dynamics, vol. 58, no. 5, pp. 475-498.

Rosario, J. M. d.; Bordawekar, R.; Choudhary, A. (1993): Improved parallel i/o via a

two-phase run-time access strategy. SIGARCH Comput. Archit. News, vol. 21, no. 5, pp.

31-38.

Sarje, A.; Song, S.; Jacobsen, D.; Huck, K.; Hollingsworth, J. et al. (2015): Parallel

performance optimizations on unstructured mesh-based simulations. Procedia Comput.

Sci., vol. 51, no. C, pp. 2016-2025.

Smolarkiewicz, P. K.; Kühnlein, C.; Grabowski, W. W. (2017): A finite-volume

module for cloud-resolving simulations of global atmospheric flows. Journal of

Computational Physics, vol. 341, pp. 208-229.

Tavara, S. (2019): Parallel computing of support vector machines: A survey. Acm

Computing Surveys, vol. 51, no. 6, pp. 1-38.

Tessier, F.; Vishwanath, V.; Jeannot, E. (2017): Tapioca: An i/o library for optimized

topology-aware data aggregation on large-scale supercomputers. 2017 IEEE

International Conference on Cluster Computing (CLUSTER), pp. 70-80.

Yu, R.; Zhang, Y.; Wang, J.; Li, J.; Chen, H. et al. (2019): Recent progress in

numerical atmospheric modeling in china. Advances in Atmospheric Sciences, vol. 36, no.

9, pp. 938-960.

Zängl, G.; Reinert, D.; Rípodas, P.; Baldauf, M. (2015): The icon (icosahedral non-

hydrostatic) modelling framework of dwd and mpi-m: Description of the non-hydrostatic

dynamical core. Quarterly Journal of the Royal Meteorological Society, vol. 141, no. 687,

pp. 563-579.

Zhang, Y. (2018): Extending high-order flux operators on spherical icosahedral grids and

their applications in the framework of a shallow water model. Journal of Advances in

Modeling Earth Systems, vol. 10, no. 1, pp. 145-164.

Zhang, Y.; Li, J.; Yu, R.; Zhang, S.; Liu, Z. et al. (2019): A layer-averaged

nonhydrostatic dynamical framework on an unstructured mesh for global and regional

atmospheric modeling: Model description, baseline evaluation, and sensitivity

exploration. Journal of Advances in Modeling Earth Systems, vol. 11, no. 6, pp. 1685-

1714.

