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Abstract. The increasing need for performance of earth system mod-
eling and other scientific domains pushes the computing technologies in
diverse architectural directions. The development of models needs techni-
cal expertise and skills of using tools that are able to exploit the hardware
capabilities. The heterogeneity of architectures complicates the develop-
ment and the maintainability of the models.

To improve the software development process of earth system models,
we provide an approach that simplifies the code maintainability by fos-
tering separation of concerns while providing performance portability.
We propose the use of high-level language extensions that reflect scien-
tific concepts. The scientists can use the programming language of their
own choice to develop models, however, they can use the language ex-
tensions optionally wherever they need. The code translation is driven
by configurations that are separated from the model source code. These
configurations are prepared by scientific programmers to optimally use
the machine’s features.

The main contribution of this paper is the demonstration of a user-
controlled source-to-source translation technique of earth system models
that are written with higher-level semantics. We discuss a flexible code
translation technique that is driven by the users through a configuration
input that is prepared especially to transform the code, and we use this
technique to produce OpenMP or OpenACC enabled codes besides MPI
to support multi-node configurations.

Keywords: DSL; Meta-Compiler; Earth system modeling; Software de-
velopment; Performance portability

1 Introduction

The diversity of the hardware architectures that arise to fulfill the performance
needs of scientific applications represents a challenge for the scientists developing
these applications. The maintainability and continuous development of applica-
tions suffers when optimizing code for several architectures. The semantics of a
general-purpose language (GPL) limit the compiler’s ability to exploit the un-
derlying machine capabilities. Therefore, developers need to manually adapt the
code to the target machine that will run the simulation, in order to make use
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of the performance capabilities of the machine. Running a model on many dif-
ferent machines requires to redesign the code to fit the features of the different
architectures and hardware configurations. This leads to a more complicated
development process where code sections are redundantly coded with machine-
dependent adaptations.

Another point that complicates the development process in this context is
the technical knowledge necessary during software development. Scientists de-
veloping such models need to have deep technical knowledge of the lower-level
details of the computer architectures that will run the model and the necessary
software development skills to exploit their features.

We suggest an approach to improve the software development process of
earth system models, which are a family of high-performance scientific applica-
tions. In our approach, the model’s code is written mainly with a general-purpose
language. Besides, we rely on the GGDML (General Grid Definition and Manip-
ulation Language) extensions from Jumah et. al [10] that can be used to write
parts of the model code.

GGDML, which was previously developed as part of the approach, provides
a set of semantically-higher-level extensions. As those extensions are not part
of the standard syntax of the general-purpose language, we need some process-
ing before passing the model to the general-purpose language compiler. In our
approach, the source code written with GGDML syntax is passed to a source-
to-source translation tool. This tool processes the code and translates it into the
modeling general-purpose language. During the processing phase by the source-
to-source translation tool, the semantically higher-level language extensions al-
low the tool to perform transformations of the source code that could not be
done by a GPL compiler. An example is changing the memory layout to gener-
ate optimized code for some hardware. The transformations applied during the
source-to-source translation phase are primarily defined in a configuration file
which is controlled by a scientific programmer. This user-controlled source-to-
source translation process is the scope of this paper.

The main contribution of this work is a novel user-controlled code transla-
tion technique that relies on a configurable code transformation which makes use
of the higher-level semantics exhibited by the language extensions. This tech-
nique allows the user to control how the language extensions affect the code
translation and optimization process. The suggested approach still permits to
write manually optimized codes, e.g. using pragmas, and supports incremental
rewriting to some extent. In fact, an important aspect of the approach and the
technique we suggest here is the opportunity that it gives to quickly explore
different configurations and options and the corresponding performance issues
without the need to change the source code or rewriting the kernels.

This paper is structured as follows: First, we discuss related work in Section 2.
We then describe the approach in Section 3. In Section 4, we review the GGDML
language extensions. Next, in Section 5 the configuration of the code translation
process is discussed. In Section 6, the approach is evaluated with an example
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application that consists of various relevant kernels. Finally, we give a summary
of the work presented in this paper in Section 7.

2 Related Work

To exploit the performance of the underlying hardware that runs a scientific
application, different techniques have been used over time. The use of libraries
which provide optimized codes like BLAS/LAPACK that can be called by appli-
cations is one way to allow applications to run efficiently. Annotating an applica-
tion’s code and processing the annotated code is another technique that allows
performance improvement by processing the annotated code in a specific way to
fit the features of the hardware. Code generation and language-specific features,
e.g. generic programming with templates in C++, are techniques that are used
to generate code for a specific machine. Domain-specific languages (DSLs) can
be developed to describe the problem, and then a machine-specific code is gener-
ated based on the problem description that is being provided by the DSL. DSLs
have been used in different ways. For example, some solutions depend on writing
the application code completely with a stand-alone DSL. On the contrary, some
solutions use DSLs to describe specific parts of the application. In such case, the
DSL drives a code generation process that results of optimized code that will
then be integrated within the other parts of the application. Some DSLs extend
an existing language with technical constructs that allow users to direct specific
optimizations, like OpenMP/OpenACC.

Libraries are widely used to provide performance-portable code for applica-
tions. A library implements a set of functions that an application can call to pro-
vide its functionality. Libraries like ELLPACK [15], BLAS [6], Intel’s MKL [9]
provide a set of mathematical functions that can be used by applications to solve
mathematical problems (e.g., elliptic differential equations and linear algebra).
Such libraries implement the functions that they provide to the applications in
a way that is aware of the architectural features and capabilities of a specific
type of machines. The developers of such libraries port them to different types
of machines (e.g. [18] ports the BLAS 3 to multi-GPU platforms) to allow ap-
plications to be developed for different machines while still using the hardware
efficiently.

The implementations provided by the libraries are normally highly optimized,
however, the calling application could still miss some optimization opportuni-
ties particularly between subsequent library calls. Such lost opportunities for
optimization can be avoided when using active libraries. The source-to-source
translation features in the active libraries OP2 [12] and OPS [14] analyzes the
behavior of the application. An application calls the APIs that the library pro-
vides and the source-to-source translation procedure handles the optimization
of the code for a specific target architecture. OPS uses its own DSL that allows
the source-to-source translation process to generate optimized code.

The use of DSLs to drive the code generation of machine-specific optimized
code was employed in different ways. Stella [8] for example, provides an embed-
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ded DSL for C++ that allows describing stencil codes for structured grids. The
stencils and the grids are specified using the DSL, which mainly uses the C++
syntax, and the machine-specific code is generated by a special backend for the
supported hardware. GridTools [2] also builds on Stella. It provides a generic
C++ API to provide performance portability for grid-based codes. GridTools
use a DSL for stencil computations and for halo exchange to provide codes for
machines with multiple nodes.

Intel’s YASK [20] is built on a DSL that enables users to define the technical
decisions to control how the stencil operation is applied to the grid, including
the domain decomposition of the grid over multiple nodes. The specification of
stencil operations is enabled by the use of object-oriented C++ features and
generic programming. The generated code is optimized for Xeon and Xeon Phi
processors. Optimization techniques like vector folding [19] and cache blocking
are used to optimize memory bandwidth usage.

Some DSLs are more tightly based on scientific domains, e.g., Atmol [3] and
Liszt [4], in contrast to the focus on technical details. However, the move to the
declarative programming needs the model developers to move to a new paradigm
for software development.

In contrast to standalone DSLs, there are DSLs that added some extensions
to existing general-purpose languages, e.g. Physis [11] which adds some exten-
sions to C++, and Icon DSL [16] which adds some extensions to Fortran. [10]
suggested a set of language extensions that are language neutral. The suggested
DSL provides a set of extensions that can be used regardless of the general
purpose language that is used to develop the model.

In code annotation techniques, descriptions can be added to the source code
to provide further information about it, and to tell how it could be optimized.
Such information is provided by the developers within the source code. Hybrid
Fortran [13], HMPP [5], Mint [17], CLAW [1] use annotation to drive the opti-
mization process. In Gung Ho [7] the scientific code is separated into higher level
algorithms and lower-level kernels. Directives drive the generation of the code
between the two layers to handle loops and parallelization. The code annotation
technique needs to push the technical details within the source code. However,
with these technical annotations, the scientists need to care for the lower-level
optimization details.

In this paper we extend the work that has been done with the GGDML
DSL [10]. We use the higher-level semantics offered by the extensions of GGDML
along with a highly configurable code translation technique to transform the
source code of a model into a machine-specific code that exploits the features of
the underlying architecture where the model would be run.

3 Approach

In this section we review our approach to improve the software development
process and discuss the user-controlled translation technique.
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3.1 The General Approach

The approach is built around using higher-level language extensions. This allows
to bypass the shortcomings of the lower-level semantics of the general-purpose
programming languages. The higher-level semantics enable the code translation
process to transform the source code in a way that exploits the capabilities of
the underlying hardware. This eliminates the need to provide technical details
about optimizations within the source code. Thus, the model developer, that is
usually a trained scientist in the domain field, does not need to think about the
hardware and performance details. In our approach we commit to the principle
of separation of concerns:

– Domain scientists write the scientific problem from a scientific perspective
– Scientific programmers provide the DSL and machine-specific optimization

The scientists formulate the scientific problem within the source code based
on the scientific concepts of their domain science. The GPL that the scientists
generally use to build their model is used. However, the scientists can also use
higher-level language extensions to write some parts of the code wherever they
see that needed, although the whole code could be developed with the base
language (without the extensions).

3.2 The User-Controlled Source-to-Source Code Translation

The source code is processed to translate the higher-level code into a form that
is optimized with respect to a specific target machine. The code translation
process described in this paper is guided by a configuration information that
allows the translation process to make the necessary transformations in order to
exploit the capabilities of the machine. This information is prepared by scientific
programmers who have the necessary technical knowledge to harness the power
of the underlying architectures and hardware configurations.

To enable the developers to use scientific concepts while programming, the
language extensions of the DSL are developed in collaboration between the sci-
entists and the scientific programmers. Then, the developed extensions are de-
fined within the configuration information. For example, they can define type
specifiers that tell some hint about a variable, e.g., that it is defined over a
three-dimensional grid, which reflects a scientific attribute.

The configuration allows the user to control how the translation tool trans-
forms the code, e.g., how to make use of the hardware to apply the computation
in an iterator statement in parallel on a multicore or manycore architecture. So,
a scientific programmer with expertise in GPUs for example would provide a
configuration information that guides the translation tool to optimally use the
GPU’s processing elements to parallelize the traversal of an iterator statement
over the grid elements. That information is differently written by an expert in
multicore architectures to make use of the vector units and multiple cores and
caching hierarchies to optimize the code for multicore processors.
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The tool infrastructure is flexible allowing to design alternative DSLs while
retaining some core optimizations that are independent of the frontend GPL and
DSL, and the generative backend.

4 GGDML Review

In this section we review the GGDML, which was developed as one part of our
approach to provide the higher-level language semantics.

The GGDML DSL has been developed as a set of language extensions to sup-
port the development of icosahedral-grid-based earth system models. Although
the extensions have been developed based on the three icosahedral models Dy-
namico, ICON, and NICAM which are written in the Fortran language, we use
the extensions to develop a testbed application in the C language. GGDML ab-
stracts the scientific concept of the grid and provides the necessary glue code
like specifiers, expressions, iterator to access and manipulate variables and grids
from a scientific point of view.

GGDML offers a set of declaration specifiers that allow to mark a variable
to contain values over the elements of a specific grid. The specifiers can tell, for
example, that the variable has a value over each cell or edge of the grid. Although
GGDML provided a set of basic specifiers, e.g., cells, edges, and vertices for the
spatial position of the variables with respect to the grid, the translation technique
is designed to support extending the set of specifiers. This dynamic support
for the extensibility of the tool stems from the highly configurable translation
technique that is described in the next section.

Besides to the hints on the scientific attributes of the variables provided
by the specifiers, GGDML provides an iterator extension as a way to express
the application of a computation over the variables which are defined over the
elements of the grid. The iterator statement comprises an iterator index, which
allows to address a specific set of grid elements. For example, to address the
cells of the three-dimensional grid. To define the set of elements over which
the computation that is defined by the iterator is intended to be applied, the
iterator statement comprises a special expression, which is another extension
that GGDML provides. Those expressions specify a set of elements of a grid
through the use of grid definition operators. The code example at the end of this
section illustrates the idea.

The index that is used to write the iterator represents an abstraction of a
scientific concept that allows to refer to a variable at a grid element, however
it does not imply any information where and how the values of the variable are
stored in memory. To allow the reference to related grid elements easily, GGDML
provides a basic set of operators. However, again this set is not a limited constant
set, as the configurability of the translation process allows to dynamically define
any operators that the developers wish to have. For example, the basic set of
operators that GGDML provides includes the operator cell.above to refer to the
cell above the cell that is being processed. Operators like cell.neighbor hide the
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indirect indices that are used in unstructured grids to refer to the related grid
elements, e.g., neighbors or cell edges. Such operators abstract again the scientific
concepts of the element relationships. They do not imply any information about
how the data is accessed or where it is stored.

GGDML provides also a reduction expression that allows to simplify the cod-
ing of the computations that are applied within an iterator statement. The re-
duction expression removes code redundancy which happens so frequently within
stencil codes, and at the same time, allows to write kernels independently from
the grid type and the resulting numbers of neighbors.

To illustrate the use of GGDML, the following test code snippet demonstrates
the use of the specifiers:

extern GVAL EDGE 3D gv grad ;
extern GVAL CELL 2D gv o8param [ 3 ] ;
extern GVAL CELL 3D gv o8par2 ;
extern GVAL CELL 3D gv o8var ;

The GVAL is a C-compiler define and we define it as float or double3. The spec-
ifiers are used as any other C specifier like extern. The following code demon-
strates an iterator statement:

FOREACH c e l l IN gr id | he ight { 1 . . ( g−>height −1)}
{

GVAL v0 = REDUCE(+ ,N={0. .2} ,
gv o8param [N ] [ c e l l ] ∗ gv grad [ c e l l . edge (N) ] ) ;

GVAL v1 = REDUCE(+ ,N={0. .2} ,
gv o8param [N ] [ c e l l ] ∗ gv grad [ c e l l . edge (N) . below ( ) ] ) ;

gv o8var [ c e l l ] = gv o8par2 [ c e l l ]∗ v0
+ (1−gv o8par2 [ c e l l ] ) ∗ v1 ;

}

The iterator’s grid expression here uses the GGDML grid expression modifier
operator | to traverse the cells of the three-dimensional grid with the height
dimension overridden with the boundaries 1 to one level below the last level. We
can write any general-purpose language code within the iterator as a computa-
tion that will be applied over the specified grid elements. The REDUCE expres-
sion is used as follows: the value of v0 will be assigned the sum of the weighted
values of the variable gv grad multiplied by gv o8param over the three edges
of the cell in a triangular grid. We see here the use of multiple access operators
cell.edge(N).below() to access the cell below a neighboring cell.

5 Machine-Specific Configuration

The extensibility of the DSL, i.e., the set of the language extensions and the
configurability of the code transformation process are key parts of our approach.
The basic set of language extensions provided by GGDML are not applied by
the source-to-source translation process as a constant set of extensions. Instead,

3 In a future version, we will support a flexible precision of different variables that can
be defined at compile time.
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the translation technique allows to define new extensions and how they affect
the code transformation process.

We mentioned in the previous section the declaration specifiers that mark the
variables. The translation process accepts configuration information that defines
named sets of specifiers and a set of specifiers under each set. For example,
the basic set of specifiers that GGDML provides are implemented as a set of
specifiers called ’loc’ which includes the ’cell’ and ’edge’ specifiers to specify the
spatial position of the variables value with respect to the grid, and another set
that is called ’dim’ which includes the specifiers ’3D’ and ’2D’ to specify the
dimensionality of the grid over which the variable is defined. So, the specifiers
are not built into the translation tool as compilers do usually. To the contrary,
the users can define any set of specifiers as they need. To demonstrate the idea,
the line

SPECIFIERS : SPECIFIER( l o c=CELL |EDGE) SPECIFIER(dim=3D|2D)

shows how we configured the translation process to translate our test application.
The sets of the specifiers provide information that enables the translation tool

to handle further code transformation steps. So, whenever a variable is declared
with any of the defined specifiers, the tool would use that information to handle
any transformations related to that variable. Among the code processing that
uses such information are the allocation and deallocation of the variables’ data
in memory, and the transformation of the addresses of the variables’ data in
memory, and choosing the consistent memory layout to access the variables data.

The translation tool uses configuration information to control the allocation
and the deallocation of the variables. The allocation/deallocation codes are gen-
erated based on this configuration input and the specifiers used to declare the
variable.

5.1 Grid Configuration

The configuration provides information that describes the grids that are used in
the model. This includes the definition of the grid’s components, e.g., the cells
of the three-dimensional grid or the cells of the grid’s two-dimensional surface.

The tool allows the configuration to specify defaults to simplify expressing
the intended grids to traverse when writing a kernel. For example, in a test code
we have used the defaults to write kernels with a simple iterator expression that
consists only of the word ’grid’. In the configuration that we prepared for the
test application, we have

GLOBALDOMAIN:
. . .
DEFAULT=CELL3D[CELL3D: c e l l , ce , c ] [EDGE3D: edge , ed , e ]

This allows us to traverse the cells of the three-dimensional grid by default or
when we use one of the words ’cell’,’ce’ or ’c’ as an iterator index. Thus, the
iterator

f o r each c e l l in g r id
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traverses the cells of the three-dimensional grid. Likewise, this example config-
uration allows to traverse the edges of the three-dimensional grid when we use
one of the words ’edge’,’ed’ or ’e’ as an iterator index. Thus, the iterator

f o r each edge in g r id

traverses the edges of the three-dimensional grid. If the defaults are not intended
to be used, then the name of the grid to be traversed, or additionally the grid
specification operators should be used.

The definition of the grids describes the grids that are used in the model
regardless of how the processing will be divided between nodes. The details of
the domain decomposition and halo exchange are provided in its own part of the
configuration information.

The definition of the grids allows using variables defined in the source code.
For example, to define the height of the grid in a test code we defined it to
take the values between 1 and height, which is a variable used in the source
code. This allows us in the experiments to pass the height as a command line
parameter to run the model with multiple heights without recompiling the code.

5.2 Configurable Access Operators

To access the value of a variable at a grid element when applying a computation
within an iterator, we refer to it by the iterator’s index. In stencil codes, it is
essential to access the neighboring elements. To handle this, GGDML provides
a basic set of operators. For example, the cell.neighbor allows to refer to the
neighbor cell of the current cell, assuming that cell is the name of the iterator’s
index.

The set of access operators are not limited to the basic set that GGDML
provides. In fact, the access operators – even the basic set of GGDML access
operators – are defined in the configurations that the translation tool uses. For
example, the operator above is defined by

above ( ) : he ight=$he ight+1

to tell the tool how to access the element that we refer to with this operator. In
a test code, besides to this operator definition, we also defined the same operator
with an overloaded form that takes a parameter to specify a number of levels
above the current element, e.g., the cell above some levels to allow references like
cell.above(2). The access operators define the relationships between the grids.
The connectivity of the unstructured grids is defined by the definitions of the
access operators.

5.3 Memory Layout

The variables are accessed by the iterator index, which abstracts an element
among a set of elements of a grid. This abstraction does not specify where the
data are stored in memory and how to access them. The translation tool uses the
user-provided configuration information to define the mapping and know how to
access the data.
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The allocation, that is guided by the configuration, allows to control the
placement of the variable’s data. Several information allow the translation tool
to decide how to access the data of a variable: Firstly, the information about
a variable that is provided by the specifiers used to declare the variable. The
iterator’s index and the access operators that are used to refer to the variable’s
data are translated into the indices that address the data in memory in a step
that includes some transformations. The applied transformations use the grid
definitions as part of the transformation process. Further mathematical trans-
formations on the indices can be controlled by the configuration information.
For example, the interchange of the indices, or even transforming a three-index-
based address (space) into a one-index-based address according to a formula like

INDEX=$0∗g−>b lkS i z e ∗g−>he ight+$1∗g−>b lkS i z e+$2

or even more complex formulas including functions, e.g. a filling curve, are pos-
sible. The expression

gv temp [ c e l l . above ( ) ]

is transformed into the three-index address

gv temp [ ( b lock index ) ] [ ( ( he i gh t index ) + 1 ) ] [ ( c e l l i n d e x ) ]

and applying the mentioned address transformation formula transforms the ad-
dress into

gv temp [ ( b lock index ) ∗ g−>b lkS i z e ∗ g−>he ight +
( ( he i gh t index ) + 1) ∗ g−>b lkS i z e + ( c e l l i n d e x ) ]

The example also demonstrates the use of the access operator above that is
mentioned in Section 5.2.

The memory layout is a key factor to exploit hardware configurations. The
choice of the transformation formulas is an important decision to improve the
performance of an application. Fortunately, the simple and quick configurability
of the memory layout makes the exploration of the memory layouts and the
corresponding performance on different architectures a simple task.

5.4 Parallelization

The parallelization of the kernels is an important part of the code translation
for the iterators. That is essential to use the hardware features to improve the
performance. The translation tool allows to provide configuration information
to control the parallelization process. For example, the user uses the following
line

0 : pragma omp p a r a l l e l f o r

to let the tool use the OpenMP scheduler. The line tells that an OpenMP pragma
is used and that the blocks are mapped to the ’for’ iterations that will be run in
parallel. Alternatively, on GPUs we can map the blocks to the OpenACC ’gangs’
for example.
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In our test codes, we have generated MPI codes with OpenMP to target
multicore processors, and OpenACC to target GPU-accelerated machines. We
could annotate the loops to use the cores of the multicore processors and the
streaming multiprocessors of the GPUs to run the kernels in parallel. The easy
configuration change of the parallelization allowed us to easily explore different
parallelization alternatives to explore performance impact.

To enable the models to run on multiple nodes, the translation tool provides
the necessary code translation like domain decomposition and halo exchange.
The processing load of the kernels over grids that are defined in the configuration
to support the model is divided between the nodes that run the model.

The code transformation of the iterators includes the grids decomposition
such that each node is responsible to process its own part of the grid. As part
of the code transformation, the translation tool analyzes the kernels and gener-
ates the necessary halo exchange code. However, this is controlled by the user-
provided configuration information. This information controls the initialization
and finalization of the communication library, and the transmission/reception
of the halo data. This includes a completely configurable halo pattern definition
and initialization.

In the test codes, we have used the MPI library to handle the communications
of the halo data between the nodes.

6 Evaluation

In this section, we discuss some experiments to evaluate the work described in
this paper. First, we describe the application that has been used as a testbed
code. Then, the machines that have been used to run the tests are described.
Finally, we discuss the tests results.

6.1 Test Application

A testbed code in the C-programming language is used to demonstrate and
test the approach. The application is an icosahedral-grid-based code, that maps
variables to the cells and edges of a three-dimensional grid. The two-dimensional
surface is mapped to one dimension using a Hilbert space-filling-curve. The curve
is partitioned into blocks. The testbed runs in explicit time steps during each of
which the model components are called to do their computations – a component
can be considered a scientific process. Each component provides a compute func-
tion that calls the necessary kernels that are needed to update some variables.
All the kernels are written with the GGDML extensions. The translation tool
is called to translate the application’s code into the different variants to run on
the test machines with different memory layouts.

6.2 Test System

Two machines have been used to run the tests. The first is the supercomputer
Mistral at the German Climate Computing Center (DKRZ). Mistral offers dual
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socket Intel Broadwell nodes (Intel Xeon E5-2695 v4 @ 2.1GHz). The second
machine is NVIDIA’s PSG cluster, where we used the Haswell CPUs (Intel(R)
Xeon(R) CPU E5-2698 v3 @ 2.30GHz). The GPU tests were run on NVIDIA’s
PSG cluster on two types of GPUs: P100 and V100.

To compile the codes and run them on Mistral we used OpenMPI version
1.8.4 and GCC version 7.1. On the PSG cluster we have used the OpenMPI
version 1.10.7 and the PGI compiler version 17.10.

6.3 Results

In the first experiment, we evaluate the application’s performance for a single
node. First, we translate the source code into a serial code and run it on the
PSG cluster to evaluate the performance improvements on CPU and GPU. We
translated it again for OpenMP to run on the Haswell multicore processors. The
OpenMP version has been run with different numbers of threads. The application
was also translated to run on the two types of GPUs; the P100 and the V100.
We tested two memory layouts:

– 3D: a three-dimensional addressing with three-dimensional array
– 3D-1D: a transformed addressing that maps the original three-index ad-

dresses into an 1D index.

All the tests have been run with a 3D grid of 1024x1024x64 for 100 time steps
using 32-bit floating point variables. The results for running the OpenMP tests
are shown in Table 1

While the change between the two chosen memory layouts have not shown
much impact on the performance on the Haswell processor, we see the impact
clear when running the same code on the GPUs. The results for running the
same code with the two different memory layouts on both GPU machines are
shown in Table 2. We also include the measured memory throughput into the
table, which we measure with NVIDIA’s ’nvprof’ tool.

The change of the memory layout means transforming the addresses from a
three-dimensional array indices to a one-dimensional array index, which means
cutting down the amount of the data that needs to be read from the memory
in each kernel. The caching hierarchy of the Haswell processor hides the impact
by using the cached values of the additional data that needs to be read in the
three-dimensional indices. However, the use of the code transformation to use
the one-dimensional index while translating the code to run on the GPU allowed
to get the performance gain.

Table 1: Performance in GFLOPS on a Single Node CPU with OpenMP

Serial
2

Threads
4

Threads
8

Threads
16

Threads
32

Threads

3D 1.97 3.74 7.05 13.78 24.15 46.94

3D-1D 1.99 3.95 7.59 14.43 24.98 48.87
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To evaluate the scalability of the testbed code on multiple nodes with GPUs,
we have translated the code for GPU-accelerated machines using MPI and we
have run it on 1-4 nodes. Figure 1 shows the performance of the application when
it is run on the P100-accelerated machines. The figure shows the performance
achieved in both cases when measuring the strong and the weak scalability. The
performance has been measured to find the maximum achievable performance
when no halo exchange is performed, and to find the performance of an opti-
mized code with halo exchange. The performance gap reflects the cost of the
data movement from and into the GPU’s memory as limited by the PCIe3 bus
and along the network using Infiniband. This gap differs according to the data
placement of the elements that need to be communicated to other nodes. Thus,
putting the elements in an order in which halo elements are closer to each other
in memory reduces the time for the data cop from and into the GPU’s memory.
The scalability (both strong and weak) is shown in Table 3. The table shows
how the performance improves with the nodes. Also, it shows the ratio that is
achieved when running the code with respect to the maximum performance gain
(that is achieved without halo exchange). The computing time spent each time
step for the whole grid (1024x1024x64 elements) is measured to be 8.34ms. The
communication times spent during each time step are shown in Table 4.

The communication times between different numbers of MPI processes run-
ning in different mappings over nodes are recorded, Table 4 shows the measured
values on the PSG cluster. We have run the application in 2,4,8,16,32,64, and
128 processes over 1,2, and 4 nodes. For multiple nodes, we mapped the MPI
processes to the nodes in three ways: cyclic, blocked with balanced numbers of
processes on each node, and in blocks where the processes subsequently fill the
nodes. The time was measured over 1000 time steps in each case. The measured
times show that optimizing the communication time is essential to achieve bet-
ter performance, and that optimizing the data movement from/into the GPU’s
memory is essential to minimize the halo exchange time.

To evaluate the scalability of the generated code with multiple MPI processes
on CPU nodes, we have run it with over 1,4,8,12,16,20,24,28,32,36,40, and 48
nodes. The performance is shown in Figure 2.

Both the strong and the weak scalability efficiency are calculated according
to the equations

Efficiencystrong = T1/(N · TN ) · 100% (1)

Table 2: Performance in GFLOPS on a Single node with a P100/V100 GPU

Serial
P100 V100

performance
GFLOPS

Memory throughput
GB/s

performance
GFLOPS

Memory throughput
GB/s

read write read write

3D 1.97 220.38 91.34 56.10 854.86 242.59 86.98

3D-1D 1.99 408.15 38.75 43.87 1240.19 148.49 57.12
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Fig. 1: Performance Scalability on nodes with P100 GPUs (performance is mea-
sured in GFLOPS)

Table 3: Performance Scalability on nodes with P100 GPUs (performance is
measured in GFLOPS)

Number
of

nodes

strong scaling weak scaling
without

communication
with
communication

ratio
without

communication
with
communication

ratio

2 1.97 1.09 55% 2.07 1.43 70%

3 2.82 1.21 43% 3.05 1.73 58%

4 3.65 1.47 40% 4.01 2.60 65%

Efficiencyweak = T1/TN · 100% (2)

where N is the number of processes, T1 is the execution time on one process, and
TN is the execution time on N processes. The results are shown in Figure 3. The
efficiency is slightly below 100% up to 48 MPI processes for the weak scaling
measurements. The Strong scaling measurements decrease from 100% at one
process to about 70% at 48 processes in a linear trend.

The performance of the generated code that uses OpenMP with the MPI is
also evaluated. The code has been generated for OpenMP and MPI and run with
multiple numbers of nodes and using different numbers of cores on each node.
We have run the code on 1,4,8,12,16,20,24,28,32,36,40 nodes and 1,2,4,8,16,32,
and 36 cores per node. The measurements are shown in Figure 4.

7 Summary

In this paper, we discussed an approach to improve the software development
process of icosahedral-grid-based earth system models. We investigated the ex-
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Table 4: Communication time per time step (in ms)

# processes 1
2 nodes 4 nodes

cyclic
block

(balanced)
block

(unbalanced)
cyclic

block
(balanced)

block
(unbalanced)

2 1.21 1.18 1.11 1.21

4 1.03 0.93 0.86 1.18 0.88 0.90 1.24

8 1.00 0.84 0.77 1.52 0.77 0.75 1.58

16 0.80 0.83 0.56 1.59 0.69 0.54 1.60

32 1.29 0.77 0.64 1.26 0.69 0.51 1.24

64 1.33 0.82 0.78 0.84 0.52 0.77
128 1.48 1.32 1.23

Fig. 2: MPI process scalability

tensibility of the model’s programming language with higher-level extensions
abstracting scientific concepts regardless of the technical concepts related to
the machine and the performance optimization. The approach relies on using a
source-to-source translation process that uses the higher semantics of the exten-
sions besides to user-provided configuration information together to transform
the source code into a target-machine-optimized code. The configuration infor-
mation allows the users to control the code transformation process. The perfor-
mance portability is an important feature of the approach. The source code of a
model is written once, and the translation procedure can use many configuration
files to generate code versions which work on different machines while exploiting
the features of those machines to run with high performance.

More extensions can be added depending on the needs of the scientists. This
is possible as the translation process is configurable by information that controls
the code transformation. Among the configuration information, the translation
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(a) Strong Scaling Efficiency (b) Weak Scaling Efficiency

Fig. 3: Scaling Efficiency

process accepts information that defines new extensions and how they affect the
code transformation.

The approach is evaluated with a test application that has been written in
the C language, with the use of the GGDML extensions. Different configurations
were prepared to translate the source code into different targets. The resulting
code versions were run on two machines. The results showed the impact of trans-
forming the code to support different memory layouts, and the performance gain
when using the cores of a multicore processor and the streaming multiprocessors
of a GPU to apply the computations in parallel. In addition, the results showed
the scalability when running on multiple nodes. The translation process was
successfully used to generate codes that run on multiple multicore nodes and
multiple GPU-accelerated nodes and the evaluation shows that the approach
could provide performance portability for the software development of the mod-
els which need scalability.

7.1 Future Work

We are working further on the optimization of the halo data communication and
the minimization of the communication overhead particularly to reduce the costs
for the GPU version. Another important path for the research we intend to con-
tinue is the improvement of the inter-kernel and inter-module optimization. We
currently provide with the translation tool some basic fusion of the kernel loops.
Also, the tool currently carries out some analysis of the kernel computations.
However, further work can be done to investigate the optimization opportuni-
ties over the set of kernels that are called in each time step, or even between
time steps.
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Fig. 4: MPI+OpenMP scalability
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